#' Mean signal for all ORFs genome-wide
#'
#' This function allows you to calculate mean ChIP signal for each ORF in the genome. The function
#' goes through all included features in the supplied gff data and for each one it adds ORF length
#' (in bp) and the mean of the signal collected from the supplied ChIP-seq data. This can then be
#' used to analyse mean signal as a function of ORF length.\cr
#' The function takes as input the wiggle data as a list of 16 chromosomes (output of
#' \code{\link{readall_tab}}).
#' \cr \cr
#' \strong{Note:} Our wiggle data always contains gaps with missing chromosome coordinates
#' and ChIP-seq signal. The way this function deals with that is by skipping affected genes.
#' The number of skipped genes in each chromosome is printed to the console, as well as the
#' final count (and percentage) of skipped genes. \cr
#' @param inputData As a list of the 16 chr wiggle data (output of \code{\link{readall_tab}}). No default.
#' @param gff Optional dataframe of the gff providing the ORF cordinates. Must be provided if
#' \code{gffFile} is not. No default. Note: You can use the function \code{\link{gff_read}} in hwglabr to
#' load your selected gff file.
#' @param gffFile Optional string indicating path to the gff file providing the ORF cordinates. Must be
#' provided if \code{gff} is not. No default.
#' @param saveFile Boolean indicating whether output should be written to a .txt file (in current working
#' directory). If \code{saveFile = FALSE}, output is returned to screen or an R object (if assigned).
#' Defaults to FALSE.
#' @return A data frame equivalent to the supplied gff table with the following additional columns:
#' \enumerate{
#' \item \code{length} Length of the ORF in bp
#' \item \code{mean_signal} Mean of the signal collected from the supplied data
#' }
#' \strong{Note:} Skipped genes are included in the output with 'NA' for \code{mean_signal}.
#' @examples
#' \dontrun{
#' signal_per_orf_length(WT, gff = gff)
#'
#' signal_per_orf_length(WT, gffFile = S288C_annotation_modified.gff, saveFile = TRUE)
#' }
#' @export
signal_per_orf_length <- function(inputData, gff, gffFile, saveFile = FALSE) {
ptm <- proc.time()
# gff
if (missing(gffFile) & missing(gff)) {
stop("No gff data provided.\n",
"You must provide either a lodaded gff as an R data frame ('gff' argument)
or the path to a gff file to load ('gffFile' argument).",
call. = FALSE)
} else if (!(missing(gffFile) | missing(gff))) {
stop("Two gff data sources provided.\n",
"Please provide either a gff R data frame ('gff' argument)
or the path to a gff file ('gffFile' argument), not both.\n",
call. = FALSE)
} else if (missing(gff)) {
gff <- hwglabr::gff_read(gffFile)
message('Loaded gff file...\n')
}
# Check reference genome for both the input data and the gff file; make sure they match
chrom_S288C <- c("I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX", "X",
"XI", "XII", "XIII", "XIV", "XV", "XVI")
chrom_SK1 <- c('01', '02', '03', '04', '05', '06', '07', '08', '09', '10',
'11', '12', '13', '14', '15', '16')
check_S288C <- any(grep('chrI.', names(inputData), fixed = TRUE))
check_SK1 <- any(grep('chr01.', names(inputData), fixed = TRUE))
check_gff_S288C <- any(gff[, 1] == 'chrI')
check_gff_SK1 <- any(gff[, 1] == 'chr01')
if (check_S288C != check_gff_S288C) {
stop("The reference genomes in the input data and the gff do not seem to match.\n",
"Please provide data and gff for the same reference genome.\n", call. = FALSE)
} else if (check_S288C & check_gff_S288C) {
message('Detected ref. genome - S288C\n')
chrom <- chrom_S288C
} else if (check_SK1 & check_gff_SK1) {
print('Detected ref. genome - SK1')
chrom <- chrom_SK1
} else stop("Did not recognize reference genome.
Check that chromosome numbers are in the usual format, e.g. 'chrI' or 'chr01'.")
if (!requireNamespace("dplyr", quietly = TRUE)) {
stop("R package 'dplyr' needed for this function to work. Please install it.\n",
"install.packages('dplyr')", call. = FALSE)
}
message('\nThe following types of features are present in the gff data you provided
(they will all be included in the analysis):\n')
for(i in 1:length(unique(gff[, 3]))) {
message(unique(gff[, 3])[i])
}
message('\nCollecting signal...')
message('Skip ORFs with missing coordinates and signal in wiggle data)\n')
# Add gene length to gff plus a new column for the mean signal
gff$length <- gff$end - gff$start
gff$mean_signal <- NA
# Create data frame to collect final data for all chrs
gff_final <- data.frame()
# Keep track of total and non-skipped genes, to print info at the end
number_genes <- 0
number_skipped_genes <- 0
# Iterate over chrs
for(i in 1:length(inputData)) {
chrNum <- paste0('chr', chrom[i])
message(paste0(chrNum, ':\n'))
# Index of ChIP data list item corresponding to chrom to analyze
# Add '.' to make it unique (otherwise e.g. 'chrI' matches 'chrII' too)
listIndex <- grep(paste0(chrNum, '.'), names(inputData), fixed = TRUE)
chromData <- inputData[[listIndex]]
colnames(chromData) <- c('position', 'signal')
# Get all genes on current chromosome
chromGff <- gff[gff[, 1] == chrNum, ]
# Count skipped genes
geneCount <- 0
for (j in 1:nrow(chromGff)) {
# Skip if gene coordinates not in ChIPseq data
# Comparison below will not work if dplyr was loaded when the wiggle data was loaded
# (because of dplyr's non standard evaluation: data is in tbl_df class)
# Workaround: convert to data.frame first
if(!chromGff[j, 4] %in% as.data.frame(chromData)[, 1] |
!chromGff[j, 5] %in% as.data.frame(chromData)[, 1]) {
next
}
# Collect signal
signal_vector <- as.data.frame(chromData[chromData[, 1] >= chromGff$start[j] &
chromData[, 1] <= chromGff$end[j], 2])
# Skip if there are discontinuities in the data (missing position:value pairs)
if(nrow(signal_vector) != chromGff$length[j] + 1) next
# Calculate mean signal on gene and save in table
chromGff$mean_signal[j] <- mean(signal_vector[, 1])
geneCount <- geneCount + 1
}
# To collect all chrs
gff_final <- dplyr::bind_rows(gff_final, chromGff)
# Keep track of total and non-skipped genes, to print info at the end
number_genes <- number_genes + j
number_skipped_genes <- number_skipped_genes + (j - geneCount)
message(paste0('... ', geneCount, ' ORFs (skipped ', j - geneCount, ')\n'))
}
# Print info on total and non-skipped genes
message('------')
message(paste0('Skipped ', number_skipped_genes, ' of a total of ', number_genes,
" ORFs (", round((number_skipped_genes * 100 / number_genes), 1),
"%).\n"))
message('------')
message(paste0('Completed in ', round((proc.time()[3] - ptm[3]) / 60, 2), ' min.\n'))
if(saveFile) {
message(paste0('Saving file...\n'))
if(check_S288C) {
write.table(gff_final, paste0(deparse(substitute(inputData)),
"_S288C_mean_signal_perORF.txt"),
sep = "\t", quote = FALSE, row.names = FALSE)
message('Done!')
} else {
write.table(mergedStrands, paste0(deparse(substitute(inputData)),
"_SK1__mean_signal_perORF.txt"),
sep = "\t", quote = FALSE, row.names = FALSE)
message('Done!')
}
} else {
message('Done!')
return(gff_final)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.