computeSingleCNV: Compute copy number variation (CNV) for single sample

Description Usage Arguments Details Value Author(s) See Also Examples

Description

This internal function computes copy number variation (CNV) for single sample. Not intended for users

Usage

1
2
3
computeSingleCNV(session.name, sample.name, ref.type = "average.pattern",
                        episl = 1, small.delta = 1e-05, bin.size = 10, 
                        is.verbose = TRUE)

Arguments

session.name

an object of PatCNVSession-class

sample.name

a character vector of sample name defined in sample information file

ref.type

"average.pattern" or "basic.paired". "average.pattern" instructs function make CNV calls using trained pattern files. "basic.paired" instructs function make CNV calls using paired normal/Germline sample.

episl

a small value adding to coverage to avoid doing log-transform on zero

small.delta

a small value

bin.size

numeric value of exon-level bin-size

is.verbose

logical value indicating if the progress information is printed

Details

Not for users

Value

numeric CNV log2-ratio value of single sample

Author(s)

Chen Wang

See Also

User should directly call computeMultiCNV

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
#==========================================================
#=== load a simulation example with generated pattern files
#==========================================================
config.filename <- 'sim2.ini'
makeSimulation(config.filename,with.pattern=TRUE)
sim.session <- createSession(config.filename)

#=== compute CNV of sample "c1"
c1.cnv <- computeSingleCNV(sim.session,"c1")

#=== plot CNV versus position (Mb)
exon.startpos <- exonInfo(sim.session,attri="start")
plot(exon.startpos/1e6, c1.cnv$CNV,
    xlab="position (Mb)",ylab="CNV log2ratio")

hshdndx/new-to-CNV documentation built on May 17, 2019, 5:55 p.m.