#------ 1. function to rename data ------
rename_data <- function(){
}
#------ 2. functions to clean data ------
# What to exclude from the analysis, delete rows that
# 1. NA's in response (r)
# 2. NA's in sample size (n)
# 3. studies report with same dose in all arms
# 4. NA's in dose
# 5. single arm studies
#*** Exclude flexible dose (ASK Georgia)
removeNAdosresdata.fun=function(dataset,var.names="all")
{
# this function takes a database and exclude studies that will cause problems in fiting the dosres model for a particular outcome
# It return the same database but in the end it has a variable that tells you which studies to exclude
# Give a name to that column in the nametoexclude variable
if(var.names=='all'){
out.studies1 <- unique(dataset$studyid[apply(dataset,1,function(x)any(is.na(x)))])
}else{
dataset.only.var <- subset(dataset,select=var.names)
out.studies1 <- unique(dataset.only.var$studyid[apply(dataset.only.var,1,function(x)any(is.na(x)))])
}
# 1. exclude studies with 0 events
#out1=unique(studyid[is.na(r)|r ==0])
out.studies2 <- unique(dataset$studyid[dataset$r==0])
# 5. exclude studies with similar reported dose
out.studies3=unique(dataset$studyid)[sapply(unique(dataset$studyid), function(x) sum(table(dataset$dose[which(dataset$studyid==x)])>1))==1]
# the index of all excluded studies
out.studies <- c(out.studies1,out.studies2,out.studies3)
# add column with include/exclude studies T/F
dataset$exclude <- ifelse(dataset$studyid%in%out.studies,TRUE,FALSE)
dataset_na.rm <- dataset[!dataset$studyid%in%out.studies,]
return(list(dataset=dataset_na.rm,out=out.studies))
}
# exclude single arm trials ( remove NA's first)
exludesinglearmsdata.fun<-function(dataset,studyid)
{
studyid=eval(substitute(studyid), dataset)
singlearmstudies=names(table(studyid))[table(studyid)<2]
dataset2=dataset[is.na(match(studyid,singlearmstudies)),]
dataset2
#returns a dataset with the same columns after excluding single arms
}
#------ 2. functions to make data in jags formatting ------
# 1. the function that find the RCS transformation for each drug
myf <- function(dose.per.drug){
max.dose <- max(dose.per.drug)
knots <- quantile(0:max.dose,probs = c(0.25,0.50,0.75))
rcs.dose.per.drug <- rcspline.eval(dose.per.drug,knots = knots,inclx = TRUE)
return(rcs.dose.per.drug)
}
# 2. create a matrix of any variable 'var' where studies in rows and arms in columns
fun.mat <- function(data,var){
ns <-length(unique(data$studyid))
na <- as.numeric(table(data$studyid)) # number of arms per study
max.na <- max(na)
data$studyID <- as.numeric(as.factor(data$studyid)) # transform studyid to ordered numeric values
study_id <- unique(data$studyID)
varmat <- matrix(NA,ns,max.na)
for (i in 1:ns) {
varmat[i,1:as.numeric(table(data$studyID)[i])] <- var[data$studyID == study_id[i]]
}
return(varmat)
}
# 3. determine the direct head-to-head comparisons
direct.comp.index <- function(data)
{
data <- dplyr::arrange(data, data$studyid, data$dose)
t1 <- vector()
t2 <- vector()
for (i in seq_along(unique(data[["studyid"]]))) {
subset <- subset(data, studyid==unique(data[["studyid"]])[i])
for (k in 2:nrow(subset)) {
t1 <- append(t1, subset[["drug"]][1])
t2 <- append(t2, subset[["drug"]][k])
if (is.na(subset[["drug"]][k])) {
stop()
}
}
}
comparisons <- data.frame(t1 = t1, t2 = t2)
comparisons <- comparisons %>% dplyr::group_by(t1, t2) %>%
dplyr::mutate(nr = dplyr::n())
comparisons <- unique(comparisons)
comparisons <- dplyr::arrange(comparisons, t1, t2)
row_name = comparisons$row_name
comparisons %<>% select(-row_name) %>% as.matrix
rownames(comparisons) = row_name
return(comparisons)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.