## ----setup, include = FALSE----------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE
)
## ------------------------------------------------------------------------
library(tSpace)
data("ts")
## ----fig.height=4, fig.width=8-------------------------------------------
visualization <- ts$ts_file
library(ggplot2)
ggplot(visualization, aes(tPC1, tPC2, color = Cell))+
geom_point()+
ggtitle('Visualization of the tSpace analysis of T cell development in tPC1 & tPC2')+
scale_color_manual(values = c('gray85', 'red', 'orange', 'blue', 'limegreen', 'skyblue', '#88fcd1', '#ee00a4', 'purple', 'black', 'pink', 'gold', 'firebrick', 'green', 'slateblue'))+
theme_classic()
ggplot(visualization, aes(tPC1, tPC3, color = Cell))+
geom_point()+
ggtitle('Visualization of the tSpace analysis of T cell development in tPC1 & tPC3')+
scale_color_manual(values = c('gray85', 'red', 'orange', 'blue', 'limegreen', 'skyblue', '#88fcd1', '#ee00a4', 'purple', 'black', 'pink', 'gold', 'firebrick', 'green', 'slateblue'))+
theme_classic()
## ----fig.height=6, fig.width=8-------------------------------------------
library(plotly)
p3d <- plot_ly(visualization, x = visualization$tPC1, y = visualization$tPC2, z = visualization$tPC3, color = visualization$Cell, colors = c('gray85', 'red', 'orange', 'blue', 'limegreen', 'skyblue', '#88fcd1', '#ee00a4', 'purple', 'black', 'pink', 'gold', 'firebrick', 'green'), marker = list(size = I(4)), type = 'scatter3d', text = ~paste("Pop: ", visualization$Cell, "<br>Index: ", visualization$Index) ) %>%
layout(paper_bgcolor='transparent')
p3d
## ----fig.height=4, fig.width=8-------------------------------------------
ggplot(visualization, aes(tPC1, tPC3, color = Cell))+
geom_point()+
scale_color_manual(values = c('gray85', 'red', 'orange', 'blue', 'limegreen', 'skyblue', '#88fcd1', '#ee00a4', 'purple', 'black', 'pink', 'gold', 'firebrick', 'green', 'slateblue'))+
ggtitle('Showing the filtering tresholds for isolation of DN3 population')+
geom_vline(xintercept = 0.01)+
geom_hline(yintercept = 0.027)+
theme_classic()
## ------------------------------------------------------------------------
dn3.trajectories <- ts$tspace_matrix[,which(colnames(ts$tspace_matrix) %in% paste0('T_', visualization[which(visualization$tPC3 > 0.027 & visualization$tPC1 < 0.01), 'Index']))]
## ----fig.height=4, fig.width=8-------------------------------------------
ggplot(visualization, aes(tPC1, tPC3, color = dn3.trajectories[,1]))+
geom_point()+
ggtitle('Heatmap of distances from trajectory 1')+
scale_color_gradientn(colours = c('magenta', 'gold', 'black'))+
theme_classic()
ggplot(visualization, aes(tPC1, tPC3, color = dn3.trajectories[,2]))+
geom_point()+
ggtitle('Heatmap of distances from trajectory 2')+
scale_color_gradientn(colours = c('magenta', 'gold', 'black'))+
theme_classic()
ggplot(visualization, aes(tPC1, tPC3, color = dn3.trajectories[,3]))+
geom_point()+
ggtitle('Heatmap of distances from trajectory 3')+
scale_color_gradientn(colours = c('magenta', 'gold', 'black'))+
theme_classic()
## ------------------------------------------------------------------------
visualization$trajectory_dist <- rowMeans(dn3.trajectories)
## ----fig.height=4, fig.width=8-------------------------------------------
ggplot(visualization, aes(tPC1, tPC3, color = Cell))+
geom_point()+
scale_color_manual(values = c('gray85', 'red', 'orange', 'blue', 'limegreen', 'skyblue', '#88fcd1', '#ee00a4', 'purple', 'black', 'pink', 'gold', 'firebrick', 'green'))+
ggtitle('Showing the filtering tresholds for isolation of DN3 to CD4 branch')+
geom_vline(xintercept = -0.001)+
geom_hline(yintercept = -0.008)+
theme_classic()
t.dn3.cd4 <- visualization[which(visualization$tPC1 > -0.001 & visualization$tPC3 > -0.008), ]
ggplot(visualization, aes(tPC1, tPC3, color = 'Rest'))+
geom_point()+
ggtitle('Examination of the isolation of DN3 to CD4 branch')+
geom_point(data = t.dn3.cd4, mapping = aes(tPC1, tPC3, color = 'Isolated trajectory'))+
theme_classic()
## ---- warning = FALSE, fig.height=4, fig.width=4-------------------------
smooth.df <- bin.trajectory(x = t.dn3.cd4[,22:34], trajectory = t.dn3.cd4$trajectory_dist, n = 250, trim=T, stat = 'median')
clean.df <- smooth.df[!is.na(smooth.df[,1]),]
heatmap(as.matrix(t(clean.df[,1:12])), Rowv = NA, Colv = NA, scale = 'none', col = cm.colors(12))
## ----fig.height=4, fig.width=8-------------------------------------------
library(umap)
umap.conf <- umap.defaults
umap.conf$n_neighbors <- 7
umap.conf$metric <- 'pearson'
umap.conf$min_dist <- 0.3
set.seed(1111)
umap.ts <- umap(ts$tspace_matrix, config = umap.conf)
visualization <- cbind(visualization, umap.ts$layout)
colnames(visualization)[36:37] <- c('umap1', 'umap2')
ggplot(visualization, aes(umap1, umap2, color = Cell))+
geom_point()+
scale_color_manual(values = c('gray85', 'red', 'orange', 'blue', 'limegreen', 'skyblue', '#88fcd1', '#ee00a4', 'purple', 'black', 'pink', 'gold', 'firebrick', 'green'))+
theme_classic()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.