Description Usage Arguments Examples
Estimate the effect of a continuous treatment.
1 | tmle.shift(Y, A, W, Qn, gn, delta, tol = 1e-05, iter.max = 5, Aval)
|
Y |
Outcome vector |
A |
Treatment vector |
W |
Covariate matrix |
Qn |
Function to compute Q(A, W) = E(Y|A,W) |
gn |
Function to compute g(A,W) = density(A|W) |
delta |
Shift value of interest. I.e., compute the effect of shifting A delta units |
tol |
Convergence tolerance for parametric fluctuation |
iter.max |
Maximum of iterations |
Aval |
Points in the range of A to approximate integrals by Riemman sums. Must be equally spaced. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | n <-100
W <- data.frame(W1 = runif(n), W2 = rbinom(n, 1, 0.7))
A <- rpois(n, lambda = exp(3 + .3*log(W$W1) - .2*exp(W$W1)*W$W2))
Y <- rbinom(n, 1, plogis(-1 + .05*A - .02*A*W$W2 + .2*A*tan(W$W1^2) -
.02*W$W1*W$W2 + 0.1*A*W$W1*W$W2))
fitA.0 <- glm(A ~ I(log(W1)) + I(exp(W1)):W2, family = poisson, data = data.frame(A, W))
fitY.0 <- glm(Y ~ A + A:W2 + A:I(tan(W1^2)) + W1:W2 + A:W1:W2, family =
binomial, data = data.frame(A, W))
gn.0 <- function(A = A, W = W)dpois(A, lambda = predict(fitA.0, newdata = W,
type = "response"))
Qn.0 <- function(A = A, W = W)predict(fitY.0, newdata = data.frame(A, W,
row.names = NULL), type = "response")
tmle00 <- tmle.shift(Y, A, W, Qn.0, gn.0, delta=2, tol = 1e-4, iter.max = 5,
Aval = seq(1, 60, 1))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.