Description Usage Arguments Value Examples
Functioning for automatically determining MASSIVE hyperparameters from data, where we assume a N(0, 10) prior on skappa_X.
1 | determine_hyperparameters(J, N, SS, sigma_G)
|
J |
Integer number of candidate instruments. |
N |
Integer number of observations. |
SS |
Numeric matrix containing first- and second-order statistics. |
sigma_G |
Numeric vector of instrument standard deviations. |
List containing sd_slab and sd_spike hyperparameters, indicating the standard deviation of the slab and spike component, respectively.
1 2 3 4 5 | J <- 5 # number of instruments
N <- 1000 # number of samples
par <- random_Gaussian_parameters(J)
dat <- generate_data_MASSIVE_model(N, n = 2, p = rep(0.3, J), par)
determine_hyperparameters(J, N, dat$SS, binomial_sigma_G(dat$SS))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.