Description Usage Arguments Value Examples
View source: R/Laplace_approximation.R
Routine for computing smart starting points from the sufficient statistics.
1 | derive_smart_starting_points(SS, sigma_G = binomial_sigma_G(SS))
|
SS |
Numeric matrix containing first- and second-order statistics. |
sigma_G |
Numeric vector of instrument standard deviations. |
List containing three smart starting points on the ML manifold for the posterior optimization.
1 2 3 4 5 6 | J <- 5 # number of instruments
N <- 1000 # number of samples
parameters <- random_Gaussian_parameters(J)
EAF <- runif(J, 0.1, 0.9) # EAF random values
dat <- generate_data_MASSIVE_model(N, 2, EAF, parameters)
derive_smart_starting_points(dat$SS)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.