derive_smart_starting_points: Routine for computing smart starting points from the...

Description Usage Arguments Value Examples

View source: R/Laplace_approximation.R

Description

Routine for computing smart starting points from the sufficient statistics.

Usage

1

Arguments

SS

Numeric matrix containing first- and second-order statistics.

sigma_G

Numeric vector of instrument standard deviations.

Value

List containing three smart starting points on the ML manifold for the posterior optimization.

Examples

1
2
3
4
5
6
J <- 5 # number of instruments
N <- 1000 # number of samples
parameters <- random_Gaussian_parameters(J) 
EAF <- runif(J, 0.1, 0.9) # EAF random values
dat <- generate_data_MASSIVE_model(N, 2, EAF, parameters)
derive_smart_starting_points(dat$SS)

igbucur/MASSIVE documentation built on Oct. 26, 2020, 1:26 a.m.