Description Usage Arguments Value Examples
MASSIVE algorithm (Model Assessment and Stochastic Search for Instrumental Variable Estimation)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | MASSIVE(
J,
N,
SS,
sigma_G,
sd_slab,
sd_spike,
max_iter = 1000,
greedy_search = parallel_greedy_search,
Laplace_approximation = safe_Laplace_approximation,
pruning_threshold = 0.003,
posterior_samples = 10000,
...
)
|
J |
Integer number of candidate instruments. |
N |
Integer number of observations. |
SS |
Numeric matrix containing first- and second-order statistics. |
sigma_G |
Numeric vector of instrument standard deviations. |
sd_slab |
Numeric scale parameter of slab component. |
sd_spike |
Numeric scale parameter of spike component. |
max_iter |
Maximum number of stochastic search steps. |
greedy_search |
Function for initial greedy search. |
Laplace_approximation |
Function used to compute Laplace approximation of IV model. |
pruning_threshold |
Numeric threshold for pruning approximated IV models. Models with probability less that threshold are pruned out. |
posterior_samples |
Integer number of posterior samples to generate. |
... |
Extra arguments for greedy_search, Laplace_approximations and find_causal_models. |
List of explored IV model approximations and their evidences
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | set.seed(2020)
J <- 10
N <- 10000
G <- matrix(rbinom(N * J, 2, 0.3), N, J)
U <- rnorm(N)
X <- G %*% runif(J, 0.3, 0.5) + U + rnorm(N)
Y <- G[, 1:5] %*% runif(5, 0.1, 0.3) + X + U + rnorm(N)
Z <- cbind(1, G, X, Y)
SS <- t(Z) %*% Z / N
sigma_G <- apply(G, 2, sd)
samples <- MASSIVE::MASSIVE(J, N, SS, sigma_G, sd_slab = 1, sd_spike = 0.01, max_iter = 1000)
plot(density(samples$betas))
median(samples$betas)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.