Description Usage Arguments Value Examples
Routine for more robust local optimum search of MASSIVE posterior, where the search is repeated until a better value cannot be found any more.
1 2 3 4 5 6 7 8 9 10 11 12 13 | robust_find_optimum(
J,
N,
SS,
sigma_G,
prior_sd,
skappa_X,
skappa_Y,
tol = 1e-06,
post_fun = scaled_neg_log_posterior,
gr_fun = scaled_neg_log_gradient,
hess_fun = scaled_neg_log_hessian
)
|
J |
Integer number of genetic instrumental variables. |
N |
Integer number of observations. |
SS |
Numeric matrix containing first- and second-order statistics. |
sigma_G |
Numeric vector of genetic IV standard deviations. |
prior_sd |
List of standard deviations for the parameter Gaussian priors. |
skappa_X |
Scale-free confounding coefficient to exposure used for initialization. |
skappa_Y |
Scale-free confounding coefficient to outcome used for initialization. |
tol |
Numeric tolerance value used to decide if a better optimum was found. |
post_fun |
Function for computing the IV model posterior value. |
gr_fun |
Function for computing the IV model posterior gradient. |
hess_fun |
Function for computing the IV model posterior Hessian. |
optim object (see optim containing optimum parameters, the value obtained at the optimum, and the Hessian at the optimum.
1 2 3 4 5 6 7 8 9 10 | J <- 5 # number of instruments
N <- 1000 # number of samples
parameters <- random_Gaussian_parameters(J)
EAF <- runif(J, 0.1, 0.9) # EAF random values
dat <- generate_data_MASSIVE_model(N, 2, EAF, parameters)
robust_find_optimum(
J, N, dat$SS, binomial_sigma_G(dat$SS),
prior_sd = decode_IV_model(get_random_IV_model(J), 1, 0.01),
skappa_X = 1, skappa_Y = 1
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.