Description Usage Arguments Value Author(s) See Also Examples
Density, distribution function, quantile function, random
generation, hpd-interval, interpolation, expectations, mode and transformations of
marginals obtained by inla
or inla.hyperpar()
.
These functions computes the density (inla.dmarginal),
the distribution function (inla.pmarginal),
the quantile function (inla.qmarginal),
random generation (inla.rmarginal),
spline smoothing (inla.smarginal),
computes expected values (inla.emarginal),
computes the mode (inla.mmarginal),
transforms the marginal (inla.tmarginal), and provide summary statistics (inla.zmarginal).
1 2 3 4 5 6 7 8 9 10 11 12 | inla.dmarginal(x, marginal, log = FALSE)
inla.pmarginal(q, marginal, normalize = TRUE, len = 2048L)
inla.qmarginal(p, marginal, len = 2048L)
inla.rmarginal(n, marginal)
inla.hpdmarginal(p, marginal, len = 2048L)
inla.smarginal(marginal, log = FALSE, extrapolate = 0.0, keep.type = FALSE, factor=15L)
inla.emarginal(fun, marginal, ...)
inla.mmarginal(marginal)
inla.tmarginal(fun, marginal, n=2048L, h.diff = .Machine$double.eps^(1/3),
method = c("quantile", "linear"))
inla.zmarginal(marginal, silent = FALSE)
|
marginal |
A marginal object from either |
fun |
A (vectorised) function like |
x |
Evaluation points |
q |
Quantiles |
p |
Probabilities |
n |
The number of observations. If |
h.diff |
The step-length for the numerical differeniation inside |
... |
Further arguments to be passed to function which expectation is to be computed. |
log |
Return density or interpolated density in log-scale? |
normalize |
Renormalise the density after interpolation? |
len |
Number of locations used to interpolate the distribution function. |
keep.type |
If |
extrapolate |
How much to extrapolate on each side when computing the interpolation. In fraction of the range. |
factor |
The number of points after interpolation is |
method |
Which method should be used to layout points for where the transformation is computed. |
silent |
Output the result visually (TRUE) or just through the call. |
inla.smarginal
returns list=c(x=c(), y=c())
of
interpolated values do extrapolation using the factor given,
and the remaining function returns what they say they should do.
Havard Rue hrue@r-inla.org
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | ## a simple linear regression example
n = 10
x = rnorm(n)
sd = 0.1
y = 1+x + rnorm(n,sd=sd)
res = inla(y ~ 1 + x, data = data.frame(x,y),
control.family=list(initial = log(1/sd^2),fixed=TRUE))
## chose a marginal and compare the with the results computed by the
## inla-program
r = res$summary.fixed["x",]
m = res$marginals.fixed$x
## compute the 95% HPD interval
inla.hpdmarginal(0.95, m)
x = seq(-6, 6, len = 1000)
y = dnorm(x)
inla.hpdmarginal(0.95, list(x=x, y=y))
## compute the the density for exp(r), version 1
r.exp = inla.tmarginal(exp, m)
## or version 2
r.exp = inla.tmarginal(function(x) exp(x), m)
## to plot the marginal, we use the inla.smarginal, which interpolates (in
## log-scale). Compare with some samples.
plot(inla.smarginal(m), type="l")
s = inla.rmarginal(1000, m)
hist(inla.rmarginal(1000, m), add=TRUE, prob=TRUE)
lines(density(s), lty=2)
m1 = inla.emarginal(function(x) x^1, m)
m2 = inla.emarginal(function(x) x^2, m)
stdev = sqrt(m2 - m1^2)
q = inla.qmarginal(c(0.025,0.975), m)
## inla-program results
print(r)
## inla.marginal-results (they shouldn't be perfect!)
print(c(mean=m1, sd=stdev, "0.025quant" = q[1], "0.975quant" = q[2]))
## using the buildt-in function
inla.zmarginal(m)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.