#' Add randomForest forecast model
#'
#' \code{add_recursive_ml_forecast_model} is a function to add a recursive
#' machine learning model from the caret package. It tunes the parameters with
#' default settings in a cross validated way.
#'
#' @param fc_models A named list of forecast models, with for each forecast
#' model a list with the model itself and a table with forecast values.
#' @param caret_model_tag A character string specifying the tag of the model to
#' be used from the caret meta package.
#' @param ts_object_train A time series object, which contains only the training
#' data.
#' @param ts_object_valid A time series object, which contains the validation
#' data. This is used for multivariate frameworks, thus it should have the
#' forecasted/actual values of the external regressors as well.
#' @param fc_name A character string specifying the name to be used for the new
#' model that is added to the list of existing forecast models.
#' @param model_type A character string indicating whether a univariate model
#' (without external regressors) or a multivariate model (with external
#' regressors) should be estimated.
#' @param periods_ahead A positive integer value indicating the number of
#' periods to forecast ahead.
#' @param periods_history A positive integer value indicating the number of
#' historic datapoints to use for training, which is only relevant for
#' specific forecast methods such as drift and mean.
#' @param keep_fc_model_objects Boolean, which is set to TRUE in order to keep
#' original fc_model objects in the main_forecasting_table after running the
#' forecast. This is needed for scenario analysis in multivariate forecasting.
#' However, it may lead to memory issues, as the main_forecasting_table
#' increases in size.
#' @param verbose Boolean, indicating whether or not the function should print
#' messages while running.
#'
#' @return A named list of forecast models, with for each forecast model a list
#' with the model itself and a table with forecast values.
#'
#' @importFrom magrittr '%>%'
#' @importFrom timetk tk_augment_timeseries_signature
#' @importFrom tidyr drop_na
#' @import tibble
#' @import dplyr
#' @importFrom crayon make_style bold italic bgRed red green blue
#' @import default
#' @import lattice
#' @import caret
#' @importFrom tstools date_to_period period_delta period_to_last_day
#' transform_data_to_ts_object
#'
#' @examples
#' ts_object_train <- tstools::initialize_ts_forecast_data(
#' data = dummy_gasprice,
#' date_col = "year_month",
#' col_of_interest = "gasprice",
#' group_cols = c("state", "oil_company"),
#' xreg_cols = c("spotprice", "gemprice")
#' ) %>%
#' dplyr::filter(grouping == "state = New York & oil_company = CompanyA") %>%
#' dplyr::slice(1:189) %>%
#' tstools::transform_data_to_ts_object()
#' ts_object_valid <- tstools::initialize_ts_forecast_data(
#' data = dummy_gasprice,
#' date_col = "year_month",
#' col_of_interest = "gasprice",
#' group_cols = c("state", "oil_company"),
#' xreg_cols = c("spotprice", "gemprice")
#' ) %>%
#' dplyr::filter(grouping == "state = New York & oil_company = CompanyA") %>%
#' dplyr::slice(190:191) %>%
#' tstools::transform_data_to_ts_object()
#' add_recursive_ml_forecast_model(
#' fc_models = list(),
#' caret_model_tag = "svmRadialSigma",
#' ts_object_train = ts_object_train,
#' ts_object_valid = ts_object_valid,
#' fc_name = "Example_svm",
#' model_type = "multivariate",
#' periods_ahead = 2,
#' verbose = TRUE
#' )
add_recursive_ml_forecast_model <- function(fc_models, caret_model_tag, ts_object_train, ts_object_valid = NULL,
fc_name, model_type = c("univariate", "multivariate"), periods_ahead = 1,
periods_history = Inf, keep_fc_model_objects = FALSE,
verbose = FALSE, log_message = "") {
# Check to make sure fc_models is a list
if (!is.list(fc_models)) stop(paste0("Object 'fc_models' is of class ",paste0(class(fc_models), collapse = "/")," ... \n\n Put in a list!"))
# Check to make sure ts_object_train is a times series object
if (!is.ts(ts_object_train)) stop(paste0("Object 'ts_object_train' is of class ",paste0(class(ts_object_train), collapse = "/")," ... \n\n Put in a time series object!"))
# Check to make sure fc_name is a string
if (!is.character(fc_name)) stop(paste0("Parameter 'fc_name' is of class ",paste0(class(fc_name), collapse = "/")," ... \n\n Put in a character string!"))
# Check to make sure ts_valid_data has enough observations if multivariate framework
model_type <- match.arg(model_type)
if (model_type == "multivariate") {
if (is.null(ts_object_valid)) {stop("The parameter 'ts_object_valid' is required for a multivariate model!")} else {
if (nrow(ts_object_valid) < periods_ahead) {
message <- paste0("Number of observations in 'ts_object_valid' (", nrow(ts_object_valid), ") is smaller than required periods_ahead (", periods_ahead, ")!")
stop(message)
}
}
}
# Check to make sure periods_ahead is a non-negative whole number
if (!(is.numeric(periods_ahead) & periods_ahead > 0 & periods_ahead == suppressWarnings(as.integer(periods_ahead)))) {
message <- paste0("The parameter 'periods_ahead' should be a positive integer value, instead of '",periods_ahead,"' ... ")
stop(message)
}
# Check to make sure periods_history is a non-negative whole number
if (periods_history != Inf) {
if (!(is.numeric(periods_history) & periods_history > 0 & periods_history == suppressWarnings(as.integer(periods_history)))) {
message <- paste0("The parameter 'periods_history' should be a positive integer value, instead of '",periods_history,"' ... ")
stop(message)
}
}
# Return fc_models as is if forecast is already available
if (fc_name %in% names(fc_models)) {
return(fc_models)
}
# Record start time
start_time <- Sys.time()
# Determine the months for which a forecast needs to be made
fc_periods <- get_fc_periods(ts_object_train, periods_ahead)
# Reduce length of the training set
ts_object_train <- trim_ts_object(
ts_object = ts_object_train,
max_length = periods_history,
from_left = F
)
# Sets full ts_object and xreg_cols
if (model_type == "multivariate") {
# Combine ts_objects into one
ts_object_full <- union_ts_objects(
ts_object_1 = ts_object_train,
ts_object_2 = ts_object_valid
)
xreg_cols <- attr(ts_object_full,"xreg_cols")
} else {
ts_object_full <- ts_object_train
xreg_cols <- NULL
}
# creates dataframe from ts object
dates <- ts_object_full %>%
ts_object_to_periods()
data <- ts_object_full %>%
timetk::tk_tbl(preserve_index = FALSE) %>%
dplyr::mutate(period = dates)
# Removes future values or adds NAs to be filled in
if (model_type == "multivariate") {
train_data <- data %>%
mask_future_values(fc_periods)
} else {
train_data <- dplyr::bind_rows(
data,
tibble::tibble(
period = fc_periods,
col_of_interest = NA
)
)
}
# Creates transformer of the data
max_lag <- max(attr(ts_object_full, "seasonality"))
transform <- transform
inv_transform <- inv_diff
default(transform) <- list(
target_col = "col_of_interest",
xreg_cols = xreg_cols,
transformation = diff,
lags = seq(1, max_lag, 1),
drifts = attr(ts_object_full, "seasonality")
)
# Creates training data
ML_train_data <- train_data %>%
dplyr::mutate(period = tstools::period_to_last_day(period)) %>%
transform()
# Set seed to enable reproduction of results
set.seed(42)
# Currently cross validated, could be improved with time series validated
# https://topepo.github.io/caret/data-splitting.html
fitControl <- caret::trainControl(method = "cv", number = 5)
# Trains using standard grid of the model, could be improved by using special
# grid per model, http://topepo.github.io/caret/model-training-and-tuning.html#customizing-the-tuning-process
# Run fine-tuned RPART tree regression
model <- suppressWarnings(
try(
expr = {
caret::train(
col_of_interest ~ .,
data = ML_train_data,
method = caret_model_tag,
trControl = fitControl
)
},
silent = TRUE
)
)
# Check for errors
if (grepl("Error",model[1])) {
# Show error messages
if (verbose) {
log_message <- paste0(red(bold(format(Sys.time(), "%H:%M:%S"))), " - ", log_message, ":")
message <- paste(log_message, bgRed("ERROR"), "for calling forecast method:", bold(fc_name), "(model estimation")
ParallelLogger::logError(message)
message <- paste(log_message, italic(red(model)))
ParallelLogger::logError(message)
}
# Return without adding a model
return(fc_models)
}
# Run forecast
forecasts <- suppressWarnings(
try(
expr = {
train_data %>%
dplyr::mutate(
period = tstools::period_to_last_day(period)
) %>%
get_forecasts(
model,
transform,
inverse_transform_target = inv_transform,
steps = periods_ahead
)
},
silent = TRUE
)
)
# Check for errors
if (grepl("Error",forecasts[1])) {
# Show error messages
if (verbose) {
log_message <- paste0(red(bold(format(Sys.time(), "%H:%M:%S"))), " - ", log_message, ":")
message <- paste(log_message, bgRed("ERROR"), "for calling forecast method:", bold(fc_name),"(forecasting)")
ParallelLogger::logError(message)
message <- paste(log_message, italic(red(forecasts)))
ParallelLogger::logError(message)
}
# Return without adding a model
return(fc_models)
}
# Create fc_date and periods
fc_date <- tstools::period_delta(min(fc_periods), -1)
# Calculate duraction in seconds
duration <- paste0(format.default(round(as.numeric(difftime(Sys.time(), start_time, units = 'sec')), 1), nsmall = 1), "s")
# Message
if (verbose) {
# Create style
ING_orange <- make_style("#FF6200")
# Create log_message
log_message <- paste0(ING_orange(bold(format(Sys.time(), "%H:%M:%S"))), " - ", log_message)
log_message <- paste0(log_message, "(in ", green(duration), "): ", blue(fc_name))
ParallelLogger::logInfo(log_message)
}
# Combine data for new forecast model
if (keep_fc_model_objects) {
# Create new forecast model
fc_model <- list(
fc_model = list(
model = model,
fc_data = tibble::tibble(
fc_date = fc_date,
period = fc_periods,
fc_value = as.numeric(forecasts$col_of_interest)
),
ML_train_data = ML_train_data
)
)
} else {
# Create new forecast model
fc_model <- list(
fc_model = list(
model = model$modelInfo$label,
fc_data = tibble::tibble(
fc_date = fc_date,
period = fc_periods,
fc_value = as.numeric(forecasts$col_of_interest)
)
)
)
}
names(fc_model) <- fc_name
# Combine within list of existing forecast models and return
fc_models %>%
append(fc_model) %>%
return()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.