#' Create plot to compare forecasts with actuals
#'
#' \code{compare_forecasts_with_actuals} is a function to create a plot which
#' compares the forecasted values with the actuals (if already available) for a
#' set of specified forecast models. For demo purposes, sensitive figures can be
#' hidden from the audience.
#'
#' @param main_forecasting_table A tibble containing a single row and several
#' columns of data required for time series forecasting, which has been
#' created using the \code{create_main_forecasting_table} function and which
#' has been extended with the fc_models and fc_errors columns using the
#' \code{add_fc_models_to_main_forecasting_table} function.
#' @param fc_models A character vector specifying which forecast models to
#' display.
#' @param demo_mode Boolean, which is to be set to TRUE if any potentially
#' sensitive figures should be hidden from the audience for demo purposes, or
#' set to FALSE if all figures can safely be displayed.
#' @param show_original Boolean, which is set to TRUE to include the original
#' actuals in the plot.
#'
#' @return A plotly object displaying both forecasts and actuals.
#' @export
#'
#' @importFrom magrittr '%>%'
#' @import dplyr
#' @import ggplot2
#' @importFrom ggthemes theme_calc
#' @importFrom plotly ggplotly layout
#' @importFrom tstools check_data_format get_plot_colors period_to_last_day
#' unlist_if_required
#'
#' @examples
#' tstools::initialize_ts_forecast_data(
#' data = dummy_gasprice,
#' date_col = "year_month",
#' col_of_interest = "gasprice",
#' group_cols = c("state", "oil_company")
#' ) %>%
#' create_main_forecasting_table() %>%
#' head(1) %>%
#' add_fc_models_to_main_forecasting_table(
#' periods_ahead = 12,
#' fc_methods = c("linear")
#' ) %>%
#' compare_forecasts_with_actuals(
#' fc_models = c("fc_linear_trend", "fc_linear_trend_seasonal")
#' )
compare_forecasts_with_actuals <- function(main_forecasting_table, fc_models = c(), demo_mode = FALSE, show_original = TRUE) {
# Check main_forecasting_table
tstools::check_data_format(
data = main_forecasting_table,
func_name = "compare_forecasts_with_actuals",
req_cols = c(
"grouping", "ts_start", "ts_split_date", "ts_end", "train_length", "valid_length",
"ts_object_train", "ts_object_valid", "fc_errors"
),
unique_value_cols = c("grouping", "ts_split_date")
)
# Check fc_models
available_fc_models <- unique(main_forecasting_table$fc_errors[[1]]$fc_model)
invalid_fc_models <- fc_models[!fc_models %in% available_fc_models]
if (length(invalid_fc_models) > 0) {
message <- paste0("The following specified fc_models are not available in the supplied main_forecasting_table fc_errors column:\n", paste0("\t", invalid_fc_models, collapse = "\n"))
stop(message)
}
if (length(fc_models) == 0) stop("The specified fc_models does not contain any fc_models to be plotted ... \n")
# Extract actuals from ts_objects
actuals <- get_actuals_from_main_forecasting_table(
main_forecasting_table = main_forecasting_table,
for_plot = T
)
# Filter out actuals_original if required
if (!show_original) {
actuals <- actuals %>%
dplyr::filter(fc_model != "actuals_original")
}
# Extract forecasts from fc_error data
forecasts <- main_forecasting_table %>%
dplyr::pull(fc_errors) %>%
tstools::unlist_if_required() %>%
dplyr::filter(fc_model %in% fc_models) %>%
dplyr::transmute(
grouping = grouping,
period = period,
fc_periods_ahead = fc_periods_ahead,
fc_model = fc_model,
value = fc_value
)
# Combine actuals and forecasts into plot data
plot_data <- dplyr::bind_rows(
actuals,
forecasts
) %>%
dplyr::filter(period <= max(forecasts$period)) %>%
dplyr::mutate(period = tstools::period_to_last_day(period))
# Determine split date
split_date <- tstools::period_to_last_day(main_forecasting_table$ts_split_date)
# Get number of lines (excluding original actuals)
lines <- sort(unique(plot_data$fc_model))
lines <- lines[lines != "actuals_original"]
# Create linetypes for plot
linetypes <- setNames(rep("solid",length(lines)),lines)
# Create colours for plot
colors <- tstools::get_plot_colors(n_colors = length(lines) - 1)
colors <- setNames(c("#000000",colors),lines)
# Overwrite colour for original actuals
if ("actuals_original" %in% actuals$fc_model) {
linetypes <- c(linetypes, setNames("dotted", "actuals_original"))
colors <- c(colors, setNames("#000000", "actuals_original"))
}
# Determine format function
if (min(plot_data$value, na.rm = T) >= 0 & max(plot_data$value, na.rm = T) <= 1) {
format_as_axis <- function(x) format(round(x, 2), nsmall = 0, big.mark = ",", scientific = F)
} else {
format_as_axis <- function(x) format(round(x, 0), nsmall = 0, big.mark = ",", scientific = F)
}
format_as <- function(x) format(round(x, 2), nsmall = 2, big.mark = ",", scientific = F)
# Create tooltip text
if (demo_mode) {
tooltip_text <- paste0("
paste0(
'Type: ', fc_model,
'<br>Period: ', format.Date(period, '%B %Y'),
ifelse(grepl('actuals', fc_model), '', paste0('<br>Ahead: ', fc_periods_ahead, ' month(s)')),
'<br>Group: ', grouping
)
")
} else {
tooltip_text <- paste0("
paste0(
'Type: ', fc_model,
'<br>Period: ', format.Date(period, '%B %Y'),
ifelse(grepl('actuals', fc_model), '', paste0('<br>Ahead: ', fc_periods_ahead, ' month(s)')),
'<br>Value: ', format_as(value),
'<br>Group: ', grouping
)
")
}
# Create the plot
plot <- suppressWarnings(
ggplot2::ggplot(plot_data, ggplot2::aes(x = period, y = value, color = fc_model, linetype = fc_model)) +
ggplot2::geom_line() +
ggplot2::geom_point(ggplot2::aes_string(text = tooltip_text), size = 0.5) +
ggplot2::geom_vline(xintercept = as.numeric(split_date), linetype = 3) +
ggplot2::scale_color_manual(values = colors) +
ggplot2::scale_linetype_manual(values = linetypes) +
ggplot2::scale_y_continuous(breaks = scales::pretty_breaks(), labels = format_as_axis) +
ggthemes::theme_calc() +
ggplot2::theme(
axis.title.x = ggplot2::element_blank(),
axis.title.y = ggplot2::element_blank(),
legend.title = ggplot2::element_blank()
)
)
# Hide y-axis if required
if (demo_mode) {
plot <- plot +
ggplot2::theme(
axis.text.y = ggplot2::element_blank(),
axis.ticks.y = ggplot2::element_blank()
)
}
# Transform to plotly and return
plot %>%
plotly::ggplotly(tooltip = "text") %>%
plotly::layout(legend = list(x = 100, y = 0.5)) %>%
return()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.