ds.limma | R Documentation |
This function performs a non-disclosive
Differential Gene Expression Analysis using limma
package from Bioconductor.
ds.limma(
model,
Set,
type.data = "microarray",
contrasts = NULL,
levels = "design",
coef = 2,
sva = FALSE,
annotCols = NULL,
method = "ls",
robust = FALSE,
normalization = "none",
voomQualityWeights = FALSE,
big = FALSE,
sort.by = "none",
datasources = NULL
)
model |
formula indicating the condition (left side) and other covariates to be adjusted for (i.e. condition ~ covar1 + ... + covar2). The fitted model is: feature ~ condition + covar1 + ... + covarN |
Set |
name of the DataSHIELD object to which the ExpresionSet or RangedSummarizedExperiment has been assigned |
type.data |
optional parameter that allows the user to specify the number of CPU cores to use during |
sva |
logical value |
annotCols |
the column names of the annotation available in the ExpresionSet or RangedSummarizedExperiment (see fData() function) |
method |
String indicating the method used in the regression: "ls" or "robust". (Default: "ls") |
robust |
Logical value indicating whether robust method is applied in the eBayes function of limma. Default is FALSE. |
normalization |
String indicating the normalize method used when using voom for RNAseq data (see normalized.method argument in limma::vomm for possible values) #' @param voomQualityWeights Logical value indicating whether limma::voomWithQualityWeights should be used instead of limma::voom. Default is FALSE and hence the pipeline uses limma::voom to transform RNAseq data. |
datasources |
a list of |
Implementation of Bioconductor's limma
in DataSHIELD using MEAL
package
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.