#' Find the risk set for a landmark model (LOCF)
#'
#' This function is a helper function for `fit_LOCF_landmark`.
#'
#' @param data_long Data frame in long format i.e. there may be more than one row per individual
#' @template x_L
#' @template x_hor
#' @template covariates
#' @template covariates_time
#' @template individual_id
#' @template event_time
#' @template event_status
#' @return List with elements corresponding to each landmark time in x_L. Each element is a data frame, containing only those individuals
#' in the risk set at each of the landmark times x_L.
#'
#'
#' @author Isobel Barrott \email{isobel.barrott@@gmail.com}
#' @details This function finds the risk set for each of landmark times in x_L. This means that each of the individuals has a LOCF value for all covariates at the landmark time and
#' has not experienced an event up to (and including) the landmark time.
#' @export
find_LOCF_risk_set <- function(data_long,
x_L,
x_hor,
covariates,
covariates_time,
individual_id,
event_time,
event_status){
if (!(is.data.frame(data_long) ||
is.list(data_long))) {
stop("data_long should be a list or data.frame")
}
if (is.data.frame(data_long)) {
data_long <- lapply(x_L, function(x_l) {
data_long
})
names(data_long) <- x_L
}
if (is.list(data_long)) {
if (!setequal(names(data_long), x_L)) {
stop("Names of elements in data_long should be landmark ages x_L")
}
}
if (!(inherits(covariates,"character"))) {
stop("covariates should have class character")
}
if (!(inherits(covariates_time,"character"))) {
stop("covariates_time should have class character")
}
if (!(inherits(individual_id,"character"))) {
stop("individual_id should have class character")
}
if (!(inherits(event_time,"character"))) {
stop("event_time should have class character")
}
if (!(inherits(event_status,"character"))) {
stop("event_status should have class character")
}
if (!(inherits(x_L,"numeric"))) {
stop("'x_L' should be numeric")
}
if (!(inherits(x_hor,"numeric"))) {
stop("'x_hor' should be numeric")
}
if (!(length(covariates_time) %in% c(length(covariates), 1))) {
stop("Length of covariates_time should be equal to length of covariates or 1")
}
if (length(covariates_time) == 1) {
covariates_time <- rep(covariates_time, times = length(covariates))
}
data_long_x_L <- lapply(1:length(x_L), function(i) {
x_l <- x_L[i]
x_h <- x_hor[i]
data_long_x_l <- data_long[[as.character(x_l)]]
for (col in c(covariates,
covariates_time,
individual_id,
event_time,
event_status)) {
if (!(col %in% names(data_long_x_l))) {
stop(col, " is not a column name in data_long")
}
# if(any(is.na(data_long_x_l[[col]]))){
# stop(col, " contains NA values")
# }
}
data_long_x_l[[individual_id]] <-
as.factor(data_long_x_l[[individual_id]])
#Pull out individuals in the risk set
data_long_x_l_risk_set <-
return_ids_with_LOCF(
data_long = data_long_x_l,
individual_id = individual_id,
x_L = x_l,
covariates = covariates,
covariates_time = covariates_time
)
data_long_x_l_risk_set <-
data_long_x_l_risk_set[data_long_x_l_risk_set[[event_time]] > x_l,]
n <-
length(unique(data_long_x_l[[individual_id]])) - length(unique(data_long_x_l_risk_set[[individual_id]]))
if (n >= 1) {
warning(
n,
" individuals have been removed from the model building as they are not in the risk set at landmark age ",
x_l
)
}
data_long_x_l <- data_long_x_l_risk_set
return(data_long_x_l)
})
names(data_long_x_L)<-x_L
data_long_x_L
}
#' Find the last observation carried forward (LOCF) values for covariates in a dataset
#'
#' This function is a helper function for `fit_LOCF_landmark`.
#'
#' @param data_long Data frame in long format i.e. there may be more than one row per individual
#' @template x_L
#' @template covariates
#' @template covariates_time
#' @param cv_name Character string specifying the column name in `data_long` that indicates cross-validation fold
#' @template individual_id
#' @return List containing `data_longitudinal`, `model_longitudinal`, and `call`.
#'
#' `data_longitudinal` has one row for each individual in `data_long` and
#' contains the LOCF value of `covariates` at the landmark time `x_L`.
#'
#' `model_longitudinal` indicates that the LOCF approach is used.
#'
#' `call` contains the call of the function.
#'
#' @author Isobel Barrott \email{isobel.barrott@@gmail.com}
#' @details This function extracts the LOCF value for each of the `covariates` in `data_long` up to (and including) time `x_L`.
#' @export
fit_LOCF_longitudinal <- function(data_long,
x_L,
covariates,
covariates_time,
cv_name = NA,
individual_id) {
call <- match.call()
if (!(inherits(data_long,"data.frame"))) {
stop("data_long should be a data frame")
}
if (!(inherits(x_L,"numeric"))) {
stop("'x_L' should be numeric")
}
for (col in c(covariates,
covariates_time,
individual_id)) {
if (!(col %in% names(data_long))) {
stop(col, " is not a column name in data_long")
}
# if (any(is.na(data_long[[col]]))){
# stop(col, " contains NA values")
# }
}
if (!is.na(cv_name)) {
if (!(cv_name %in% names(data_long))) {
stop(cv_name, " is not a column name in data_long")
}
if (any(is.na(data_long[[cv_name]]))) {
stop("The column ", cv_name, " contains NA values")
}
}
if (!(length(covariates_time) %in% c(length(covariates), 1))) {
stop("Length of covariates_time should be equal to length of covariates or 1")
}
if (length(covariates_time) == 1) {
covariates_time <- rep(covariates_time, times = length(covariates))
}
if (dim(
return_ids_with_LOCF(
data_long = data_long,
individual_id = individual_id,
x_L = x_L,
covariates = covariates,
covariates_time = covariates_time
)
)[1] != dim(data_long)[1]) {
stop(
paste0(
"data_long contains individuals that do not have a LOCF for all covariates at landmark age ",
x_L,
".
Use function return_ids_with_LOCF to remove these individuals from the dataset data_long."
)
)
}
data_long[[individual_id]] <-
as.factor(data_long[[individual_id]])
data_LOCF <- data_long
#Pick out LOCF for each covariate
LOCF_values_by_variable <-
lapply(1:length(covariates), function(x) {
return_LOCF_by_variable(
data_long = data_LOCF,
i = x,
covariates = covariates,
covariates_time = covariates_time,
individual_id = individual_id,
x_L = x_L
)
})
data_LOCF <- Reduce(merge, LOCF_values_by_variable)
data_LOCF <-
data_LOCF[match(unique(data_long[[individual_id]][data_long[[individual_id]] %in% data_LOCF[[individual_id]]]), data_LOCF[[individual_id]]), ]
if (!is.na(cv_name)) {
data_LOCF <-
dplyr::left_join(data_LOCF, unique(data_long[c(individual_id, cv_name)]), by =
individual_id)
}
data_LOCF <-
data_LOCF[, order(match(names(data_LOCF), names(data_long)))]
data_LOCF <-
data_LOCF[order(match(data_LOCF[[individual_id]], data_long[[individual_id]])), ]
rownames(data_LOCF) <- NULL
list(
data_longitudinal = data_LOCF,
model_longitudinal = "LOCF",
call = call
)
}
#' Fit a landmark model using a last observation carried forward (LOCF) method for the longitudinal data
#'
#' This function performs the two-stage landmarking analysis.
#'
#' @param data_long Data frame or list of data frames each corresponding to a landmark age `x_L` (each element of the list must be named the value of `x_L` it corresponds to).
#' Each data frame contains repeat measurements data and time-to-event data in long format.
#' @template x_L
#' @template x_hor
#' @template event_status
#' @template event_time
#' @param k Integer specifying the number of folds for cross-validation. An alternative to setting parameter `cross_validation_df` for performing cross-validation;
#' if both are missing no cross-validation is used.
#' @template cross_validation_df
#' @template b
#' @template covariates
#' @template covariates_time
#' @template individual_id
#' @template survival_submodel
#' @return List containing containing information about the landmark model at each of the landmark times.
#' Each element of this list is named the corresponding landmark time, and is itself a list containing elements:
#' `data`, `model_longitudinal`, `model_survival`, and `prediction_error`.
#'
#' `data` has one row for each individual in the risk set at `x_L` and
#' contains the value of the `covariates` at the landmark time `x_L` using the LOCF approach. It also includes the predicted
#' probability that the event of interest has occurred by time \code{x_hor}, labelled as \code{"event_prediction"}.
#' There is one row for each individual.
#'
#' `model_longitudinal` indicates that the longitudinal approach is LOCF.
#'
#' `model_survival` contains the outputs from the function used to fit the survival submodel, including the estimated parameters of the model.
#' For a model using cross-validation, `model_survival` contains a list of outputs with each
#' element in the list corresponding to a different cross-validation fold. For more information on how the survival model is fitted
#' please see `?fit_survival_model` which is a function used within `fit_LOCF_landmark`.
#'
#' `prediction_error` contains a list indicating the c-index and Brier score at time `x_hor` and their standard errors if parameter `b` is used.
#' For more information on how the prediction error is calculated
#' please see `?get_model_assessment` which is the function used to do this within `fit_LOCF_landmark`.
#'
#' @details Firstly, this function selects the individuals in the risk set at the landmark time \code{x_L}.
#' Specifically, the individuals in the risk set are those that have entered the study before the landmark time \code{x_L}
#' (there is at least one observation for each of the \code{predictors_LME} and \code{random_effects} on or before \code{x_L}) and
#' exited the study after the landmark age (\code{event_time}
#' is greater than \code{x_L}).
#'
#' Secondly, if the option to use cross validation
#' is selected (using either parameter `k` or `cross_validation_df`), then an extra column `cross_validation_number` is added with the
#' cross-validation folds. If parameter `k` is used, then the function `add_cv_number`
#' randomly assigns these folds. For more details on this function see `?add_cv_number`.
#' If the parameter `cross_validation_df` is used, then the folds specified in this data frame are added.
#' If cross-validation is not selected then the landmark model is
#' fit to the entire group of individuals in the risk set (this is both the training and test dataset).
#'
#' Thirdly, the landmark model is then fit to each of the training datasets. There are two parts to fitting the landmark model: using the longitudinal data and using the survival data.
#' Using the longitudinal data is the first stage and is performed using `fit_LOCF_longitudinal`. See `?fit_LOCF_longitudinal` more for information about this function.
#' This function censors the
#' individuals at the time horizon `x_L` and fits the survival model. Using the survival data is the second stage and is performed using `fit_survival_model`. See `?fit_survival_model` more for information about this function.
#'
#' Fourthly, the performance of the model is then assessed on the set of predictions
#' from the entire set of individuals in the risk set by calculating Brier score and C-index.
#' This is performed using `get_model_assessment`. See `?get_model_assessment` more for information about this function.
#'
#' @author Isobel Barrott \email{isobel.barrott@@gmail.com}
#' @examples
#' library(Landmarking)
#' data(data_repeat_outcomes)
#' data_model_landmark_LOCF <-
#' fit_LOCF_landmark(
#' data_long = data_repeat_outcomes,
#' x_L = c(60, 61),
#' x_hor = c(65, 66),
#' covariates =
#' c("ethnicity", "smoking", "diabetes", "sbp_stnd", "tchdl_stnd"),
#' covariates_time =
#' c(rep("response_time_sbp_stnd", 4), "response_time_tchdl_stnd"),
#' k = 10,
#' individual_id = "id",
#' event_time = "event_time",
#' event_status = "event_status",
#' survival_submodel = "cause_specific"
#' )
#' @importFrom stats as.formula
#' @importFrom survival Surv
#' @importFrom survival coxph
#' @importFrom prodlim Hist
#' @export
fit_LOCF_landmark <- function(data_long,
x_L,
x_hor,
covariates,
covariates_time,
k,
cross_validation_df,
individual_id,
event_time,
event_status,
survival_submodel = c("standard_cox", "cause_specific", "fine_gray"),
b) {
call <- match.call()
survival_submodel <- match.arg(survival_submodel)
#Checks
if (missing(k)) {
k_add <- FALSE
}
else{
k_add <- TRUE
if (!(is.numeric(k))) {
stop("k should be numeric")
}
}
if (missing(cross_validation_df)) {
cross_validation_df_add <- FALSE
}
else{
cross_validation_df_add <- TRUE
if (inherits(cross_validation_df, "list")) {
if (!all(x_L %in% names(cross_validation_df))) {
stop(
"The names of elements in cross_validation_df list should be the landmark times in x_L"
)
}
if (any(Reduce("c", lapply(cross_validation_df, function(x) {
any(duplicated(dplyr::distinct(x[, c(individual_id, "cross_validation_number")])[, individual_id]))
})))) {
stop("Cross validation folds should be the same for the same individual")
}
}
else if (inherits(cross_validation_df,"data.frame")) {
if (any(duplicated(dplyr::distinct(cross_validation_df[, c(individual_id, "cross_validation_number")])[, individual_id]))) {
stop("Cross validation folds should be the same for the same individual")
}
cross_validation_df<-list(cross_validation_df)
names(cross_validation_df)<-x_L
}
else{
stop("cross_validation_df should be either a data frame or a list")
}
}
if (k_add == TRUE &&
cross_validation_df_add == TRUE) {
stop("Either use parameter k or cross_validation_df but not both")
}
if (k_add == FALSE &&
cross_validation_df_add == FALSE) {
cv_name <- NA
} else{
cv_name <- "cross_validation_number"
}
if (!(length(covariates_time) %in% c(length(covariates), 1))) {
stop("Length of covariates_time should be equal to length of covariates or 1")
}
if (length(covariates_time) == 1) {
covariates_time <- rep(covariates_time, times = length(covariates))
}
if (length(x_L) != length(x_hor)) {
stop("Length of x_L should be the same as length of x_hor")
}
if (!(is.data.frame(data_long) ||
is.list(data_long))) {
stop("data_long should be a list or data.frame")
}
if (is.data.frame(data_long)) {
data_long <- lapply(x_L, function(x_l) {
data_long
})
names(data_long) <- x_L
}
if (is.list(data_long)) {
if (!setequal(names(data_long), x_L)) {
stop("Names of elements in data_long should be landmark ages x_L")
}
}
if (missing(b)) {
b <- NA
}
#Find risk set
data_long_x_L<-find_LOCF_risk_set(data_long=data_long,
x_L=x_L,
x_hor=x_hor,
covariates=covariates,
covariates_time=covariates_time,
individual_id=individual_id,
event_time=event_time,
event_status=event_status)
#Add cross-validation folds
if (cross_validation_df_add == TRUE) {
for (x_l in x_L){
data_long_x_L[[as.character(x_l)]]<-
dplyr::left_join(data_long_x_L[[as.character(x_l)]], cross_validation_df[[as.character(x_l)]][,c(individual_id,"cross_validation_number")],by=individual_id)
}
if(any(is.na(data_long_x_L[[as.character(x_l)]][,"cross_validation_number"]))){stop("Cross validation number not defined for all in individual_id")}
}
if (k_add == TRUE) {
data_long_x_L_cv <-
add_cv_number(
data_long = Reduce("rbind", data_long_x_L),
individual_id = individual_id,
k = k
)
data_long_x_L <-
lapply(data_long_x_L, function(x) {
dplyr::left_join(x, dplyr::distinct(data_long_x_L_cv[, c(individual_id, "cross_validation_number")]), by =
individual_id)
})
}
#Fit each landmark model
out <- lapply(1:length(x_L), function(i) {
x_l <- x_L[i]
x_h <- x_hor[i]
data_long <- data_long_x_L[[as.character(x_l)]]
message("Fitting longitudinal submodel, landmark age ", x_l)
data_model_longitudinal <-
fit_LOCF_longitudinal(
data_long = data_long,
x_L = x_l,
covariates = covariates,
covariates_time =
covariates_time,
cv_name = cv_name,
individual_id =
individual_id
)
message("Complete, landmark age ", x_l)
data_events <-
dplyr::distinct(data_long[, c(individual_id, event_status, event_time)])
data_longitudinal <-
dplyr::left_join(data_model_longitudinal$data_longitudinal,
data_events,
by = individual_id)
message("Fitting survival submodel, landmark age ", x_l)
data_model_survival <- fit_survival_model(
data = data_longitudinal,
individual_id = individual_id,
cv_name = cv_name,
covariates = covariates,
event_time = event_time,
event_status = event_status,
survival_submodel = survival_submodel,
x_hor = x_h
)
message("Complete, landmark age ", x_l)
data_events <-
dplyr::left_join(data_events,
data_model_survival$data_survival[,c(individual_id,"event_prediction")],
by = individual_id)
prediction_error <-
get_model_assessment(
data = data_model_survival$data_survival,
individual_id = individual_id,
event_prediction = "event_prediction",
event_status = event_status,
event_time = event_time,
x_hor = x_h,
b = b
)
list(
data = data_model_survival$data_survival,
model_longitudinal = data_model_longitudinal$model_longitudinal,
model_survival = data_model_survival$model_survival,
prediction_error = prediction_error,
call = call
)
})
names(out) <- x_L
class(out) <- "landmark"
out
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.