Description Usage Arguments Value Note Examples
Estimation of parameters of AR(p) model to simulate the auxiliary Gaussian process.
1 2 3 4 5 6 7 8 9 10 |
ACF |
A vector with the target autocorrelation structure (including lag-0 coefficient that is equal to 1). |
maxlag |
A scalar incating the order of the AR(p) model. If maxlag=0, then the order of the model is p=(length(ACF)-1) |
dist |
A string indicating the quantile function of the target marginal distribution (i.e., the ICDF). |
params |
A named list with the parameters of the target distribution. |
NatafIntMethod |
A string ("GH", "Int", or "MC") indicating the intergation method to resolve the Nataf integral. |
NoEval |
A scalar indicating (default: 9) the number of evaluation points for the integration methods. |
polydeg |
A scalar indicating the order of the fitted polynomial. If polydeg=0, then another curve is fitted. |
... |
Additional named arguments for the selected "NatafIntMethod" method. |
A list with the parameters of the auxiliary Gaussian AR(p) model.
Avoid the use of the "GH" method (i.e., NatafIntMethod='GH'), when the marginal(s) are discrete.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | ## Simulation of univariate stationary process with Gamma marginal distribution
## and autocorrelation structure given by the product of a CAS and a periodic ACS.
## Not run:
set.seed(12)
# Define the target autocorrelation structure.
acsS=csCAS(param=c(3,0.6),lag=1000) # Stationary CAS with b=3 and k=0.6.
acsP=csPeriodic(param=c(12,1.5),lag=1000) # Periodic ACS with p=12 and l=1.5.
ACS=csP*csS # The target ACS as product of the two previous ones.
# Define the target distribution function (ICDF).
FX='qgamma' # the Gamma distribution
# Define the parameters of the target distribution.
pFX=list(shape=5,scale=1)
# Estimate the parameters of the auxiliary Gaussian AR(p) model.
ARTApar=EstARTAp(ACF=ACS,maxlag=0,dist=FX,params=pFX,NatafIntMethod='GH')
# Generate a synthetic series of 10000 length.
SynthARTAcont=SimARTAp(ARTApar=ARTApar,steps=10^5)
## End(Not run)
## Simulation of univariate stationary process with discrete marginal distribution
## (Beta-Binomial) and autocorrelation structure given by CAS.
## Not run:
set.seed(16)
# Define the target autocorrelation structure.
ACS=acsCAS(param=c(1.5,0.3),lag=1000) # CAS with b=1.5 and k=0.3.
# Define the target distribution function (ICDF).
require(TailRank)
FX='qbb' # the Beta-Binomial distribution.
# Define the parameters of the target distribution.
pFX=list(N=10,u=3,v=10)
# Estimate the parameters of the auxiliary Gaussian AR(p) model.
ARTApar=EstARTAp(ACF=ACS,maxlag=0,dist=FX,params=pFX,NatafIntMethod="MC")
# Generate a synthetic series of 10000 length.
SynthARTAdiscr=SimARTAp(ARTApar=ARTApar,steps=10^5)
## End(Not run)
## Simulation of univariate stationary process with zero-inflated marginal distribution
## (Gen. Gamma for the continuous part) and autocorrelation structure given by CAS.
## Not run:
set.seed(18)
# Define the target autocorrelation structure.
ACS=acsCAS(param=c(0.91,1.09),lag=1000) # CAS with b=0.91 and k=1.09.
# Define the target distribution function (ICDF).
FX='qmixed' # Define that distribution is of zero-inflated type.
# Define the distribution for the continuous part of the process.
# Here, a re-parameterized version of Gen. Gamma distribution is used.
qgengamma=function(p,scale,shape1,shape2){
require(VGAM)
X=qgengamma.stacy(p=p,scale=scale,k=(shape1/shape2),d=shape2)
return(X)
}
# Define the parameters of the zero-inflated distribution function.
pFX=list(Distr=qgengamma,p0=0.8,scale=0.25,shape1=1.16,shape2=0.54)
# Estimate the parameters of the auxiliary Gaussian AR(p) model.
ARTApar=EstARTAp(ACF=ACS,dist=FX,params=pFX,NatafIntMethod="GH",NoEval=9,polydeg=0)
# Generate a synthetic series of 10000 length.
SynthARTAzi=SimARTAp(ARTApar=ARTApar,steps=10^5)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.