Description Usage Arguments Value Note Examples
Estimation of the auxiliary Gaussian model parameters for the generation of correlated Random variables (RVs).
1 | EstCorrRVs(R, dist, params, NatafIntMethod = "GH", NoEval = 9, polydeg = 8)
|
R |
A k x k matrix with the target Pearson correlation coefficients among the k RVs. |
dist |
A k-dimensional string vector indicating the quantile function of the target marginal distributions (i.e., the ICDF) of k RVs. |
params |
A k-dimensional named list with the parameters of the k target distributions. |
NatafIntMethod |
A string ("GH", "Int", or "MC") indicating the intergation method to resolve the Nataf integral. |
NoEval |
A scalar indicating (default: 9) the number of evaluation points for the integration methods. |
polydeg |
A scalar indicating the order of the fitted polynomial. If polydeg=0, then another curve is fitted. |
... |
Additional named arguments for the selected "NatafIntMethod" method. |
A list with the parameters of the auxiliary Gaussian model.
Avoid the use of the "GH" method (i.e., NatafIntMethod='GH'), when the marginal(s) are discrete.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ## Simulation of 3 correlated RVs with Gamma, Beta and Log-Normal distribution, respectively.
## We assume also a target correlation matrix.
## Not run:
set.seed(13)
# Define the target distribution functions (ICDFs) of X1, X2 and X3 RV.
FX1='qgamma'; FX2='qbeta'; FX3='qlnorm'
Distr=c(FX1,FX2,FX3) # store in a vector.
# Define the parameters of the target distribution functions
# and store them in a list.
pFX1=list(shape=1.5,scale=2); pFX2=list(shape1=1.5,shape2=3)
pFX3=list(meanlog=1,sdlog=0.5)
DistrParams=list()
DistrParams[[1]]=pFX1;DistrParams[[2]]=pFX2;DistrParams[[3]]=pFX3
# Define the target correlation matrix.
CorrelMat=matrix(c(1,0.7,0.5,
0.7,1,0.8,
0.5,0.8,1),ncol=3,nrow=3,byrow=T);
# Estimate the parameters of the auxiliary Gaussian model.
paramsRVs=EstCorrRVs(R=CorrelMat,dist=Distr,params=DistrParams,
NatafIntMethod='GH',NoEval=9,polydeg=8)
# Generate 10000 synthetic realisations of the 3 correlated RVs.
SynthRVs=SimCorrRVs(n=10000,paramsRVs=paramsRVs)
# Comparison of target and simulation correlation matrix.
pairs(SynthRVs)
CorrelMatSim=cor(SynthRVs)
difference=(CorrelMat-CorrelMatSim)^2; print(difference)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.