Description Usage Arguments Value Note Examples
Estimation of parameters of the auxiliary PAR(1) model to simulate the auxiliary cyclostationary Gaussian process to establish the target season-to-season correlation structure.
1 2 3 4 5 6 7 8 9 |
s2srtarget |
A k-dimensional vector with the lag-1 season-to-season correlation coefficients. |
dist |
A k-dimensional string vector indicating the quantile function of the target marginal distributions (i.e., the ICDFs). |
params |
A k-dimensional named list with the parameters of the target distributions. |
NatafIntMethod |
A string ("GH", "Int", or "MC") indicating the integration method to resolve the Nataf integral. |
NoEval |
A scalar indicating (default: 9) the number of evaluation points for the integration methods. |
polydeg |
A scalar indicating the order of the fitted polynomial. If polydeg=0, then another curve is fitted. |
... |
Additional named arguments for the selected "NatafIntMethod" method. |
A list with the parameters of the cyclostationary auxiliary Gaussian PAR(1) model.
Avoid the use of the "GH" method (i.e., NatafIntMethod='GH'), when the marginal(s) are discrete.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | ## Simulation of univariate cyclostationary process with specific distribution function at each season
## and specific lag-1 season-to-season correlations.
## Not run:
set.seed(21)
# Define the number of seasons.
NumOfSeasons=12 # number of months
# Define the lag-1 season-to-season correlation coefficients (12 values).
rtarget<-c(0.05,0.55,0.45,0.4,0.6,0.75,0.7,0.75,0.5,0.3,0.3,0.2)
# Define the target distribution functions for each season.
# In this example, a re-parameterized version of Gen. Gamma distribution is used.
qgengamma=function(p,scale, shape1, shape2){
require(VGAM)
X=qgengamma.stacy(p=p,scale=scale,k=(shape1/shape2),d=shape2)
return(X)
}
# Or, a re-parameterized version of Burr Type XII distribution.
qburr=function(p,scale,shape1,shape2) {
require(ExtDist)
x=ExtDist::qBurr(p=p,b=scale,g=shape1,s=shape2)
return(x)
}
# Here, we define the target distribution of each season, though being of continuous type,
# as a zero-inflated ones to demonstrate the more general case. Alternatively, the definition
# could be conducted as in the example of EstARTAp function.
FXs<-rep('qmixed',NumOfSeasons) # Define that distributions are of zero-inflated type.
# Define the parameters of the zero-inflated distribution function for each season.
PFXs<-vector("list",NumOfSeasons)
PFXs[[1]]=list(p0=0.0,Distr=qgengamma,scale=47.22,shape1=2.7,shape2=0.97)
PFXs[[2]]=list(p0=0.0,Distr=qgengamma,scale=199.4,shape1=1.74,shape2=3.45)
PFXs[[3]]=list(p0=0.0,Distr=qburr,scale=193.2,shape1=3.07,shape2=2.54)
PFXs[[4]]=list(p0=0.0,Distr=qburr,scale=172.16,shape1=4.42,shape2=2.50)
PFXs[[5]]=list(p0=0.0,Distr=qgengamma,scale=53.40,shape1=4.11,shape2=1.66)
PFXs[[6]]=list(p0=0.0,Distr=qgengamma,scale=0.017,shape1=26.23,shape2=0.51)
PFXs[[7]]=list(p0=0.0,Distr=qgengamma,scale=27.70,shape1=5.15,shape2=5.30)
PFXs[[8]]=list(p0=0.0,Distr=qgengamma,scale=0.33,shape1=30.97,shape2=0.876)
PFXs[[9]]=list(p0=0.0,Distr=qburr,scale=14.46,shape1=7.6,shape2=0.44)
PFXs[[10]]=list(p0=0.0,Distr=qburr,scale=29.36,shape1=2.73,shape2=0.87)
PFXs[[11]]=list(p0=0.0,Distr=qgengamma,scale=53.15,shape1=3.12,shape2=1.4)
PFXs[[12]]=list(p0=0.0,Distr=qgengamma,scale=116.02,shape1=2.21,shape2=1.33)
# Estimate the parameters of SPARTA model.
SPARTApar<-EstSPARTA(s2srtarget=rtarget,dist=FXs,params=PFXs,
NatafIntMethod='GH',NoEval=9,polydeg=8,nodes=11)
# Generate a synthetic series of 10000 length.
simSPARTA<-SimSPARTA(SPARTApar=SPARTApar,steps=10^5)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.