parameters_numerical_dynamics = function(
yrs=yrs,
snowcrab_filter_class = "M0",
spec_bio=2526,
carstm_model_label=paste("default", snowcrab_filter_class, sep="_"),
modeldir="",
carstm_directory="" ) {
# we do this here so that the same parameters are accessible when creating the data wrap up for julia
# poisson works too but variance is not exactly poisson (higher than mean)
Nfamily = switch( snowcrab_filter_class,
M0 = "nbinomial",
M1 = "nbinomial",
M2 = "nbinomial",
M3 = "nbinomial",
M4 = "nbinomial",
f.mat = "nbinomial"
)
if (carstm_directory=="") carstm_directory = file.path( modeldir, carstm_model_label )
# params for number
pN = snowcrab_parameters(
project_class="carstm",
yrs=yrs,
areal_units_type="tesselation",
family = Nfamily,
carstm_model_label= carstm_model_label,
carstm_directory = carstm_directory,
modeldir=modeldir,
selection = list(
type = "number",
biologicals=list( spec_bio=spec_bio ),
biologicals_using_snowcrab_filter_class=snowcrab_filter_class
)
)
# params for mean size .. mostly the same as pN
pW = snowcrab_parameters(
project_class="carstm",
yrs=yrs,
areal_units_type="tesselation",
family = "gaussian",
carstm_model_label= carstm_model_label,
carstm_directory = carstm_directory,
modeldir=modeldir,
selection = list(
type = "meansize",
biologicals=list( spec_bio=spec_bio ),
biologicals_using_snowcrab_filter_class=snowcrab_filter_class
)
)
# params for probability of observation
pH = snowcrab_parameters(
project_class="carstm",
yrs=yrs,
areal_units_type="tesselation",
family = "binomial", # "binomial", # "nbinomial", "betabinomial", "zeroinflatedbinomial0" , "zeroinflatednbinomial0"
carstm_model_label= carstm_model_label,
carstm_directory = carstm_directory,
modeldir=modeldir,
selection = list(
type = "presence_absence",
biologicals=list( spec_bio=spec_bio ),
biologicals_using_snowcrab_filter_class=snowcrab_filter_class
)
)
sppoly_tweaks = list(
# vary params by variable as data densities vary for these size/age/sex groups
areal_units_constraint_ntarget= list( M0=8, M1=10, M2=14, M3=14, M4=14, f.mat=8 ),
n_iter_drop=list( M0=0, M1=1, M2=1, M3=1, M4=1, f.mat=0 )
)
pN$areal_units_constraint_ntarget = sppoly_tweaks[["areal_units_constraint_ntarget"]][[snowcrab_filter_class]]
pN$n_iter_drop = sppoly_tweaks[["n_iter_drop"]][[snowcrab_filter_class]]
pW$areal_units_constraint_ntarget = sppoly_tweaks[["areal_units_constraint_ntarget"]][[snowcrab_filter_class]]
pW$n_iter_drop = sppoly_tweaks[["n_iter_drop"]][[snowcrab_filter_class]]
pH$areal_units_constraint_ntarget = sppoly_tweaks[["areal_units_constraint_ntarget"]][[snowcrab_filter_class]]
pH$n_iter_drop = sppoly_tweaks[["n_iter_drop"]][[snowcrab_filter_class]]
return( list(pN=pN, pW=pW, pH=pH ) )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.