impute_randomforest: Random forest imputation

Description Usage Arguments Value References See Also Examples

Description

Apply random forest imputation to a matrix or poplin object. This is an interface to the missForest function from the missForest package. Since the random forest is a tree-based method, it is invariant to monotonic transformations.

Usage

1
2
3
4
5
## S4 method for signature 'matrix'
impute_randomforest(x, ...)

## S4 method for signature 'poplin'
impute_randomforest(x, xin, xout, ...)

Arguments

x

A matrix or poplin object.

...

Additional arguments passed to missForest.

xin

Character specifying the name of data to retrieve from x when x is a poplin object.

xout

Character specifying the name of data to store in x when x is a poplin object.

Value

A matrix or poplin object of the same dimension as x containing the imputed intensities.

References

Daniel J. Stekhoven (2013). missForest: Nonparametric Missing Value Imputation using Random Forest. R package version 1.4.

Stekhoven D. J., & Buehlmann, P. (2012). MissForest - non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118.

See Also

Other imputation methods: impute_knn(), impute_pca(), impute_univariate(), poplin_impute()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
data(faahko_poplin)

if (requireNamespace("missForest", quietly = TRUE)) {
  ## poplin object
  impute_randomforest(faahko_poplin, xin = "raw", xout = "rf")

  ## matrix
  m <- poplin_raw(faahko_poplin, xin = "raw")
  impute_randomforest(m)
}

jaehyunjoo/poplin documentation built on Jan. 8, 2022, 1:13 a.m.