Description Usage Arguments Value References See Also Examples
Apply random forest imputation to a matrix or poplin object. This is an interface to the missForest function from the missForest package. Since the random forest is a tree-based method, it is invariant to monotonic transformations.
1 2 3 4 5 | ## S4 method for signature 'matrix'
impute_randomforest(x, ...)
## S4 method for signature 'poplin'
impute_randomforest(x, xin, xout, ...)
|
x |
A matrix or poplin object. |
... |
Additional arguments passed to missForest. |
xin |
Character specifying the name of data to retrieve from |
xout |
Character specifying the name of data to store in |
A matrix or poplin object of the same dimension as
x
containing the imputed intensities.
Daniel J. Stekhoven (2013). missForest: Nonparametric Missing Value Imputation using Random Forest. R package version 1.4.
Stekhoven D. J., & Buehlmann, P. (2012). MissForest - non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118.
Other imputation methods:
impute_knn()
,
impute_pca()
,
impute_univariate()
,
poplin_impute()
1 2 3 4 5 6 7 8 9 10 | data(faahko_poplin)
if (requireNamespace("missForest", quietly = TRUE)) {
## poplin object
impute_randomforest(faahko_poplin, xin = "raw", xout = "rf")
## matrix
m <- poplin_raw(faahko_poplin, xin = "raw")
impute_randomforest(m)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.