normalize_scale: Feature-based scaling

Description Usage Arguments Value References See Also Examples

Description

Apply feature-based scaling to a matrix or poplin object. The supported methods include

Note that each feature is mean-centered prior to division. See van den Berg et al. (2006) for details.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
## S4 method for signature 'matrix'
normalize_scale(x, type = c("auto", "range", "pareto", "vast", "level"))

## S4 method for signature 'poplin'
normalize_scale(
  x,
  xin,
  xout,
  type = c("auto", "range", "pareto", "vast", "level")
)

Arguments

x

A matrix or poplin object.

type

The scaling method to be applied.

xin

Character specifying the name of data to retrieve from x when x is a poplin object.

xout

Character specifying the name of data to store in x when x is a poplin object.

Value

A matrix or poplin object of the same dimension as x containing the normalized intensities.

References

van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006 Jun 8;7:142. doi: 10.1186/1471-2164-7-142. PMID: 16762068; PMCID: PMC1534033.

See Also

Other normalization methods: normalize_cyclicloess(), normalize_mad(), normalize_mean(), normalize_median(), normalize_pqn(), normalize_sum(), normalize_vsn(), poplin_normalize()

Examples

1
2
3
4
5
6
7
8
9
data(faahko_poplin)

## poplin object
normalize_scale(faahko_poplin, xin = "knn", xout = "knn_auto",
                type = "auto")

## matrix
m <- poplin_data(faahko_poplin, "knn")
normalize_scale(m, "pareto")

jaehyunjoo/poplin documentation built on Jan. 8, 2022, 1:13 a.m.