Description Usage Arguments Value See Also Examples
Data normalization aims to reduce unwanted variations. The poplin package provides a few data-driven normalization methods. poplin_normalize is a wrapper for the following set of functions:
normalize_pqn:PQN (probabilistic quotient normalization)
normalize_sum:sum normalization
normalize_mean:mean normalization
normalize_median:median normalization
normalize_mad:MAD (median absolute deviation) normalization
normalize_cyclicloess:cyclic LOESS normalization
normalize_vsn:VSN (variance stabilizing normalization)
normalize_scale:feature-based scaling (e.g., auto, range, pareto, vast, level)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ## S4 method for signature 'matrix'
poplin_normalize(
x,
method = c("pqn", "sum", "mean", "median", "mad", "cyclicloess", "vsn", "scale"),
...
)
## S4 method for signature 'poplin'
poplin_normalize(
x,
method = c("pqn", "sum", "mean", "median", "mad", "cyclicloess", "vsn", "scale"),
xin,
xout,
...
)
|
x |
A matrix or poplin object. |
method |
The normalization method to be used, defaulting to "pqn". |
... |
Arguments passed to a specific normalization method. |
xin |
Character specifying the name of data to retrieve from |
xout |
Character specifying the name of data to store in |
A matrix or poplin object of the same dimension as
x containing the normalized intensities.
Other normalization methods:
normalize_cyclicloess(),
normalize_mad(),
normalize_mean(),
normalize_median(),
normalize_pqn(),
normalize_scale(),
normalize_sum(),
normalize_vsn()
1 2 3 4 5 6 7 8 9 | data(faahko_poplin)
## poplin object
poplin_normalize(faahko_poplin, method = "pqn",
xin = "knn", xout = "knn_pqn")
## matrix
m <- poplin_data(faahko_poplin, "knn")
poplin_normalize(m)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.