Description Usage Arguments Value References See Also Examples
Apply PCA imputation to a matrix or poplin object. This is a interface to the pca function from the pcaMethods package. Here, features are interpreted as variables and samples as observations. Pre-processing of input (centering, scaling) may be necessary. See the documentation of pca. Note that the PCA imputation could yield negative feature values that need to be post-processed.
1 2 3 4 5 | ## S4 method for signature 'matrix'
impute_pca(x, type = c("nipals", "bpca", "ppca", "svdImpute"), ...)
## S4 method for signature 'poplin'
impute_pca(x, xin, xout, type = c("nipals", "bpca", "ppca", "svdImpute"), ...)
|
x |
A matrix or poplin object. |
type |
The method to perform PCA. |
... |
Additional arguments passed to pca. |
xin |
Character specifying the name of data to retrieve from |
xout |
Character specifying the name of data to store in |
A matrix or poplin object of the same dimension as
x
containing the imputed intensities.
Stacklies, W., Redestig, H., Scholz, M., Walther, D. and Selbig, J. pcaMethods – a Bioconductor package providing PCA methods for incomplete data. Bioinformatics, 2007, 23, 1164-1167
Other imputation methods:
impute_knn()
,
impute_randomforest()
,
impute_univariate()
,
poplin_impute()
1 2 3 4 5 6 7 8 9 10 11 | data(faahko_poplin)
if (requireNamespace("pcaMethods", quietly = TRUE)) {
## poplin object
impute_pca(faahko_poplin, xin = "raw", xout = "ppca", type = "ppca",
center = TRUE, scale = "uv")
## matrix
m <- poplin_raw(faahko_poplin, "raw")
impute_pca(m, type = "ppca", center = TRUE, scale = "uv")
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.