Man pages for jakubkala/QuiPTsim

accuracyAccuracy (fraction of correctly classified obesravtions)
add_motifsinjects motifs to a sequence
aggregate_metricsAggregates metrics
aggregate_resultsaggregates results from 'parse_results'
benchmark_summaryFunction summarizes results for a given feature selection...
build_modelfunction builds a model and predicts out of fold probabilites
calculate_ngram_probfunction computes probability of given n-gram
calculate_scoreCalculates metrics for a given feature selection method
calculate_seq_probfunction computes probability of given sequence
collect_filtering_timesfunction aggregates computation times
compute_metricsAggregated scores
cosine_similaritycalculates cosine similarity of two vectors
count_ngramswrapper for seqR counters
create_benchmark_dataComputes feature selection on n-gram matrices Result is an...
create_simulation_datafunction generates set of RDS files containing n-gram...
create_simulation_data_set_of_motifsfunction generates set of RDS files containing n-gram...
euclidean_normcalculates euclidean norm of a given vector
evaluate_filtering_resultsWrapper for 'evaluate_selected_kmers' functions
evaluate_modelsFunction trains and evaluates model on selected k-mers
evaluate_selected_kmersEvaluation of filtered k-mers in ranking model approach
F1scoreF1-score (harmonic mean of precision and recall)
filter_ngramsWrapper for feature selection methods
filter_nonrankingsfunction that evaluates nonranking methods
filter_nonrankings_exp3function that evaluates nonranking methods
filter_rankingsfunction creates and evaluates filtering rankings
filter_rankings_exp3function creates and evaluates filtering rankings
generate_motifsgenerate multiple motifs from alphabet
generate_probsfunction generates two vectors of probabilities with given...
generate_sequencesfunction counts n-grams in given sequences
generate_single_motiffunction generates motif from an alphabet TODO: motif length...
kmers_for_nonranking_methodscalculates number of k-mers to select for non-ranking methods
parse_resultsparsing filtering results for ranking methods
positive_ngramsFunction returns ector indicating n-grams considered positive
precisionPrecision
QuiPTsimBenchmarkFunction wraps up QuiPT evaluation auxiliary functions
rbind_ngram_matricesfunction binds n-gram matrices
rbind_ngramsfunction combines two ngram matrices
read_ngram_matrixfunction reads output files of 'create_simulation_data'
read_simulation_datafunction reads results of 'create_simulation_data' function...
recallRecall
sensitivitySensitivity (true positive rate, recall)
sequenceTransitionMatrixfunction computes transition matrix
simulate_sequencesfunction generates sequences (both positive & negative)
simulate_single_sequencegenerates sequence of elements from alphabet with replacement
specificitySpecificity (true negative rate)
subset_matrixsubsets simple triplet matrix
validate_motifsfunction validates if given motifs can be injected to a...
jakubkala/QuiPTsim documentation built on Jan. 17, 2022, 11:27 p.m.