accuracy | Accuracy (fraction of correctly classified obesravtions) |
add_motifs | injects motifs to a sequence |
aggregate_metrics | Aggregates metrics |
aggregate_results | aggregates results from 'parse_results' |
benchmark_summary | Function summarizes results for a given feature selection... |
build_model | function builds a model and predicts out of fold probabilites |
calculate_ngram_prob | function computes probability of given n-gram |
calculate_score | Calculates metrics for a given feature selection method |
calculate_seq_prob | function computes probability of given sequence |
collect_filtering_times | function aggregates computation times |
compute_metrics | Aggregated scores |
cosine_similarity | calculates cosine similarity of two vectors |
count_ngrams | wrapper for seqR counters |
create_benchmark_data | Computes feature selection on n-gram matrices Result is an... |
create_simulation_data | function generates set of RDS files containing n-gram... |
create_simulation_data_set_of_motifs | function generates set of RDS files containing n-gram... |
euclidean_norm | calculates euclidean norm of a given vector |
evaluate_filtering_results | Wrapper for 'evaluate_selected_kmers' functions |
evaluate_models | Function trains and evaluates model on selected k-mers |
evaluate_selected_kmers | Evaluation of filtered k-mers in ranking model approach |
F1score | F1-score (harmonic mean of precision and recall) |
filter_ngrams | Wrapper for feature selection methods |
filter_nonrankings | function that evaluates nonranking methods |
filter_nonrankings_exp3 | function that evaluates nonranking methods |
filter_rankings | function creates and evaluates filtering rankings |
filter_rankings_exp3 | function creates and evaluates filtering rankings |
generate_motifs | generate multiple motifs from alphabet |
generate_probs | function generates two vectors of probabilities with given... |
generate_sequences | function counts n-grams in given sequences |
generate_single_motif | function generates motif from an alphabet TODO: motif length... |
kmers_for_nonranking_methods | calculates number of k-mers to select for non-ranking methods |
parse_results | parsing filtering results for ranking methods |
positive_ngrams | Function returns ector indicating n-grams considered positive |
precision | Precision |
QuiPTsimBenchmark | Function wraps up QuiPT evaluation auxiliary functions |
rbind_ngram_matrices | function binds n-gram matrices |
rbind_ngrams | function combines two ngram matrices |
read_ngram_matrix | function reads output files of 'create_simulation_data' |
read_simulation_data | function reads results of 'create_simulation_data' function... |
recall | Recall |
sensitivity | Sensitivity (true positive rate, recall) |
sequenceTransitionMatrix | function computes transition matrix |
simulate_sequences | function generates sequences (both positive & negative) |
simulate_single_sequence | generates sequence of elements from alphabet with replacement |
specificity | Specificity (true negative rate) |
subset_matrix | subsets simple triplet matrix |
validate_motifs | function validates if given motifs can be injected to a... |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.