#' @title Parse Maxent lambdas information
#'
#' @description NOTICE: This function was borrowed from the rmaxent package
#' written by John Baumgartner (https://github.com/johnbaums/rmaxent/).
# It is included here with John's permission to make ENMeval CRAN-compatible
#' (dependencies on Github-only packages are not allowed for CRAN).
#'
#' Parse Maxent .lambdas files to extract the types, weights, minima and maxima
#' of features, as well as the fitted model's entropy and other values required
#' for predicting to new data.
#'
#' @param lambdas Either a `MaxEnt` fitted model object (fitted with the
#' `maxent` function in the `dismo` package), or a file path to a
#' Maxent .lambdas file.
#' @return A list (of class `lambdas`) with five elements:
#' * `lambdas`: a `data.frame` describing the features used in
#' a Maxent model, including their weights (lambdas), maxima, minima, and
#' type;
#' * `linearPredictorNormalizer`: a constant that ensures the
#' linear predictor (the sum of clamped features multiplied by their
#' respective feature weights) is always negative (for numerical stability);
#' * `densityNormalizer`: a scaling constant that ensures Maxent's
#' raw output sums to 1 over background points;
#' * `numBackgroundPoints`: the number of background points used in
#' model training; and
#' * `entropy`: the entropy of the fitted model.
#' @references
#' * Wilson, P. W. (2009) [_Guidelines for computing MaxEnt model output values from a lambdas file_](http://gis.humboldt.edu/OLM/Courses/GSP_570/Learning\%20Modules/10\%20BlueSpray_Maxent_Uncertinaty/MaxEnt\%20lambda\%20files.pdf).
#' * _Maxent software for species habitat modeling, version 3.3.3k_ help file (software freely available [here](https://www.cs.princeton.edu/~schapire/maxent/)).
#' @importFrom methods is
#' @importFrom utils count.fields
#' @importFrom stats setNames
#' @export
#' @examples
#' # Below we use the predicts::MaxEnt example to fit a model:
#' library(predicts)
#' occs <- read.csv(file.path(system.file(package="predicts"),
#' "/ex/bradypus.csv"))[,2:3]
#' predictors <- rast(file.path(system.file(package='predicts'), '/ex/bio.tif'))
#' me <- MaxEnt(predictors, occs)
#' # ... and then parse the lambdas information:
#' lam <- parse_lambdas(me)
#' lam
#' str(lam, 1)
parse_lambdas <- function(lambdas) {
if(methods::is(lambdas, 'MaxEnt_model')) {
lambdas <- lambdas@lambdas
} else {
lambdas <- readLines(lambdas)
}
con <- textConnection(lambdas)
n <- utils::count.fields(con, ',', quote='')
close(con)
meta <- stats::setNames(lapply(strsplit(lambdas[n==2], ', '),
function(x) as.numeric(x[2])),
sapply(strsplit(lambdas[n==2], ', '), '[[', 1))
lambdas <- stats::setNames(data.frame(do.call(
rbind, strsplit(lambdas[n==4], ', ')), stringsAsFactors=FALSE),
c('feature', 'lambda', 'min', 'max'))
lambdas[, -1] <- lapply(lambdas[, -1], as.numeric)
lambdas$feature <- sub('=', '==', lambdas$feature)
lambdas$feature <- sub('<', '<=', lambdas$feature)
lambdas$type <- factor(sapply(lambdas$feature, function(x) {
switch(gsub("\\w|\\.|-|\\(|\\)", "", x),
"==" = 'categorical',
"<=" = "threshold",
"^" = "quadratic",
"*" = "product",
"`" = "reverse_hinge",
"'" = 'forward_hinge',
'linear')
}))
vars <- gsub("\\^2|\\(.*<=|\\((.*)==.*|`|\\'|\\)", "\\1", lambdas$feature)
lambdas$var <- sub('\\*', ',', vars)
l <- c(list(lambdas=lambdas[, c(1, 6, 2:5)]), meta)
class(l) <- 'lambdas'
l
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.