eigen_all <- readRDS(file.path(matrices_path, "eigen_all.rds"))
eigen_phys <- readRDS(file.path(matrices_path, "eigen_physical.rds"))
eigen_all_scaled <- readRDS(
file.path(matrices_path, "eigen_all_polymod_scaled.rds"))
eigen_phys_scaled <- readRDS(
file.path(matrices_path, "eigen_physical_polymod_scaled.rds"))
R_mean <- 2.6
R_sd <- 0.54
print(paste("R_mean:", R_mean))
print(paste("R_sd:", R_sd))
type <- rep(c("All", "Physical", "All_scaled", "Phys_scaled"), each = boots)
eigens <- c(eigen_all, eigen_phys, eigen_all_scaled, eigen_phys_scaled)
eigen_df <- data.table(type, eigens)
previousR <- rnorm(nrow(eigen_df), mean = R_mean, sd = R_sd)
eigen_df <- data.table(type, eigens, previousR, newR = eigens*previousR)
attr(eigen_df, 'R_mean') <- R_mean
attr(eigen_df, 'R_d') <- R_sd
saveRDS(eigen_df, file = file.path(matrices_path, "rds_eigen.rds"))
eigen_df[,.(
mean = mean(newR),
lci = quantile(newR, probs = 0.025),
uci = quantile(newR, probs = 0.975),
eigen_mean = mean(eigens),
eigen_lci = quantile(eigens, probs = 0.025),
eigen_uci = quantile(eigens, probs = 0.975),
eigen_lci = min(eigens),
eigen_uci = max(eigens)
),
by = type
]
changes_inR <- readRDS(file.path(matrices_path, "rds_eigen.rds"))
max_all <- 1/max(eigen_all)
max_phys <- 1/max(eigen_phys)
boots <- length(eigen_all)
ggplot(eigen_df) +
geom_histogram(aes(max_all * eigens, fill = type, group = type),
bins = 100, position = "identity") +
xlim(c(0,1)) +
facet_wrap(.~type) +
geom_vline(xintercept = 1) +
scale_x_log10()
# 3.4?
# eigen_df[ , 3.4 * mean(eigens) , by = type]
# eigen_df[ , 3.4 * median(eigens) , by = type]
## Create R estimates table
eigen_summary_table <- data.table(
contact = c("all", "physical"),
mean = c(mean(eigen_all),
mean(eigen_phys)),
min = c(min(eigen_all),
min(eigen_phys)),
ci_low = c(quantile(eigen_all, probs = c(0.025, 0.975))[1],
quantile(eigen_phys, probs = c(0.025, 0.975))[1]),
ci_high = c(quantile(eigen_all, probs = c(0.025, 0.975))[2],
quantile(eigen_phys, probs = c(0.025, 0.975))[2]),
max = c(max(eigen_all),
max(eigen_phys))
)
eigen_summary_table
attr(eigen_summary_table, 'R_mean') <- R_mean
attr(eigen_summary_table, 'R_d') <- R_sd
saveRDS(eigen_summary_table,
file.path(outputs_path, "r_summary_table.rds"))
write.csv(eigen_summary_table,
file.path(outputs_path, "eigen_summary_table.csv"))
## Create R estimates table
all_scaled_mean <- mean(rnorm(boots,
mean = R_mean,
sd = R_sd) * eigen_all_scaled)
all_scaled_quantiles <- quantile(
rnorm(boots, mean = R_mean, sd = R_sd) * eigen_all_scaled,
probs = c(0.025, 0.975))
phys_scaled_mean <- mean(rnorm(boots,
mean = R_mean,
sd = R_sd) * eigen_phys_scaled)
phys_scaled_quantiles <- quantile(
rnorm(boots, mean = R_mean, sd = R_sd) * eigen_phys_scaled,
probs = c(0.025, 0.975))
R_summary_table <- data.table(
contact = c("all", "physical", "all scaled", "phsyical scaled"),
mean = c(mean(R_mean * eigen_all),
mean(R_mean * eigen_phys)),
ci_low = c(quantile(R_mean * eigen_all, probs = c(0.025, 0.975))[1],
quantile(R_mean * eigen_phys, probs = c(0.025, 0.975))[1],
all_scaled_quantiles[1],
phys_scaled_quantiles[1]),
ci_high = c(quantile(R_mean * eigen_all, probs = c(0.025, 0.975))[2],
quantile(R_mean * eigen_phys, probs = c(0.025, 0.975))[2],
all_scaled_quantiles[2],
phys_scaled_quantiles[2])
)
R_summary_table
attr(R_summary_table, 'R_mean') <- R_mean
attr(R_summary_table, 'R_d') <- R_sd
saveRDS(R_summary_table, file.path(outputs_path, "r_summary_table.rds"))
write.csv(R_summary_table, file.path(outputs_path, "r_summary_table.csv"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.