#
# Copyright (C) 2013-2020 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
LDmixtureNormalNormalInternal <- function(jaspResults, dataset, options, state=NULL){
options <- .ldRecodeOptionsMixtureNormalNormal(options)
#### Show distribution section ----
.ldShowDistribution(jaspResults = jaspResults, options = options, name = gettext("mixture of two normal distributions"),
parSupportMoments = .ldMixtureNormalNormalParsSupportMoments,
formulaPDF = .ldFormulaMixtureNormalNormalPDF,
formulaCDF = .ldFormulaMixtureNormalNormalCDF,
formulaQF = .ldFormulaMixtureNormalNormalQF)
#### Generate and Display data section ----
# simulate and read data
.simulateData(jaspResults, options)
ready <- options[['variable']] != ""
errors <- FALSE
if(ready){
variable <- dataset[[options[['variable']]]]
variable <- variable[!is.na(variable)]
errors <- .hasErrors(dataset, type = c("observations", "variance", "infinity", "limits"),
observations.amount = "<2",
limits.min = options$support$min, limits.max = options$support$max,
exitAnalysisIfErrors = FALSE)
}
# overview of the data
.ldDescriptives(jaspResults, variable, options, ready, errors, "continuous")
#### Fit data and assess fit ----
.ldMLE(jaspResults, variable, options, ready, errors, .ldFillMixtureNormalNormalEstimatesTable)
return()
}
.ldRecodeOptionsMixtureNormalNormal <- function(options){
options[['parValNames']] <- c("pi", "mu1", "sigma1", "mu2", "sigma2")
options[['pars']] <- options[options[['parValNames']]]
options[['pdfFun']] <- dmixnormnorm
options[['cdfFun']] <- pmixnormnorm
options[['qFun']] <- qmixnormnorm
options[['rFun']] <- rmixnormnorm
options[['distNameInR']] <- "mixnormnorm"
options <- .ldOptionsDeterminePlotLimits(options)
options$support <- list(min = -Inf, max = Inf)
options$lowerBound <- c(0, -Inf, 0, -Inf, 0)
options$upperBound <- c(1, Inf, Inf, Inf, Inf)
options$transformations <- setNames(options[['parValNames']], options[['parValNames']])
options
}
### text fill functions -----
.ldMixtureNormalNormalParsSupportMoments <- function(jaspResults, options){
if(options$parsSupportMoments && is.null(jaspResults[['parsSupportMoments']])){
pars <- list()
pars[[1]] <- gettextf("probability of first component: %s", "π \u2208 [0, 1]")
pars[[2]] <- gettextf("mean 1: %s", "μ\u2081 \u2208 \u211D")
pars[[3]] <- gettextf("std. deviation 1: %s", "σ\u2081 \u2208 \u211D<sup>+</sup>")
pars[[4]] <- gettextf("mean 2: %s", "μ\u2082 \u2208 \u211D")
pars[[5]] <- gettextf("std. deviation 2: %s", "σ\u2082 \u2208 \u211D<sup>+</sup>")
support <- "x \u2208 \u211D"
moments <- list()
moments$expectation <- "πμ\u2081 + (1-π)μ\u2082"
moments$variance <- "πσ\u2081<sup>2</sup> + (1-π)σ\u2082<sup>2</sup> + [πμ\u2081<sup>2</sup> + (1-π)μ\u2082<sup>2</sup> - (πμ\u2081 + (1-π)μ\u2082)<sup>2</sup>]"
jaspResults[['parsSupportMoments']] <- .ldParsSupportMoments(pars, support, moments)
}
}
.ldFormulaMixtureNormalNormalPDF <- function(options){
}
.ldFormulaMixtureNormalNormalCDF <- function(options){
}
.ldFormulaMixtureNormalNormalQF <- function(options){
}
#### Table functions ----
.ldFillMixtureNormalNormalEstimatesTable <- function(table, results, options, ready){
if(!ready) return()
if(is.null(results)) return()
if(is.null(table)) return()
par <- c(pi = "\u03C0", mu1 = "\u03BC\u2081", sigma1 = "\u03C3\u2081", mu2 = "\u03BC\u2082", sigma2 = "\u03C3\u2082" )
res <- results$structured
res$parName <- par
if(results$fitdist$convergence != 0){
table$addFootnote(gettext("The optimization did not converge, try adjusting the parameter values."), symbol = gettext("<i>Warning.</i>"))
}
if(!is.null(results$fitdist$optim.message)){
table$addFootnote(results$fitdist$message, symbol = gettext("<i>Warning.</i>"))
}
table$setData(res)
return()
}
### Distribution functions ----
dmixnormnorm <- function(x, pi, mu1, sigma1, mu2, sigma2, log = FALSE) {
out <- pi * dnorm(x, mu1, sigma1) + (1-pi) * dnorm(x, mu2, sigma2)
if(log) out <- log(out)
return(out)
}
pmixnormnorm <- function(q, pi, mu1, sigma1, mu2, sigma2, lower.tail = TRUE, log.p = FALSE) {
out <- pi * pnorm(q, mu1, sigma1) + (1-pi) * pnorm(q, mu2, sigma2)
if(!lower.tail) out <- 1-out
if(log.p) out <- log(out)
return(out)
}
qmixnormnorm <- function(p, pi, mu1, sigma1, mu2, sigma2, lower.tail = TRUE, log.p = FALSE) {
if(log.p) p <- exp(p)
if(!lower.tail) p <- 1-p
n <- length(p)
q <- sapply(seq_len(n), function(i) { .getQuantileMixtureNormalNormal(p[i], pi, mu1, sigma1, mu2, sigma2) })
return(q)
}
.getQuantileMixtureNormalNormal <- function(p, pi, mu1, sigma1, mu2, sigma2) {
o <- try(optim(par = pi*mu1 + (1-pi)*mu2, fn = .pErrorMixtureNormalNormal, lower = -Inf, upper = Inf, method = "L-BFGS-B",
p = p, pars = list(pi=pi, mu1=mu1, sigma1=sigma1, mu2=mu2, sigma2=sigma2)), silent = TRUE)
if(inherits(o, "try-error")) {
return(NA)
} else {
return(o[["par"]])
}
}
.pErrorMixtureNormalNormal <- function(q, p, pars) {
args <- c(q=q, pars)
pp <- do.call(pmixnormnorm, args)
return((pp-p)^2)
}
rmixnormnorm <- function(n, pi, mu1, sigma1, mu2, sigma2) {
component <- sample(1:2, size = n, replace = TRUE, prob = c(pi, 1-pi))
out <- rnorm(n = n, mean = c(mu1, mu2)[component], sd = c(sigma1, sigma2)[component])
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.