#
# Copyright (C) 2013-2020 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
LDwaldInternal <- function(jaspResults, dataset, options, state=NULL){
options <- .ldRecodeOptionsWald(options)
#### Show wald section ----
.ldShowDistribution(jaspResults = jaspResults, options = options, name = gettext("Wald distribution"),
parSupportMoments = .ldWaldParsSupportMoments,
formulaPDF = .ldFormulaWaldPDF,
formulaCDF = .ldFormulaWaldCDF,
formulaQF = .ldFormulaWaldQF)
#### Generate and Display data section ----
# simulate and read data
.simulateData(jaspResults, options)
ready <- options[['variable']] != ""
errors <- FALSE
if(ready){
variable <- dataset[[options[['variable']]]]
variable <- variable[!is.na(variable)]
errors <- .hasErrors(dataset, type = c("observations", "variance", "infinity", "limits"),
observations.amount = "<2",
limits.min = options$support$min, limits.max = options$support$max,
exitAnalysisIfErrors = FALSE)
}
# overview of the data
.ldDescriptives(jaspResults, variable, options, ready, errors, "continuous")
#### Fit data and assess fit ----
.ldMLE(jaspResults, variable, options, ready, errors, .ldFillWaldEstimatesTable)
return()
}
### options ----
.ldRecodeOptionsWald <- function(options){
if(options[["parametrization"]] == "mulambda"){
options[["mu"]] <- options[["par1"]]
options[["lambda"]] <- options[["par2"]]
} else if(options[["parametrization"]] == "alphanu"){
options[["mu"]] <- options[["par1"]] / options[["par2"]]
options[["lambda"]] <- options[["par1"]]^2
} else if(options[["parametrization"]] == "alphasigma"){
options[["mu"]] <- options[["par1"]]
options[["lambda"]] <- (options[["par1"]] / options[["par2"]])^2
} else if(options[["parametrization"]] == "nusigma"){
options[["mu"]] <- 1 / options[["par1"]]
options[["lambda"]] <- (1 / options[["par2"]])^2
}
options[['parValNames']] <- c("par1", "par2")
options[['pars']] <- list(mu = options[['mu']], lambda = options[['lambda']])
options[['pdfFun']] <- dwald
options[['cdfFun']] <- pwald
options[['qFun']] <- qwald
options[['rFun']] <- rwald
options[['distNameInR']] <- "wald"
options <- .ldOptionsDeterminePlotLimits(options)
options$support <- list(min = 0, max = Inf)
options$lowerBound <- c(0, 0)
options$upperBound <- c(Inf, Inf)
options$transformations <- switch(options[["parametrization"]],
alphasigma = c(mu = "mu", lambda = "lambda", alpha = "mu", nu = "1", sigma = "mu/sqrt(lambda)"),
nusigma = c(mu = "mu", lambda = "lambda", alpha = "1", nu = "1/mu", sigma = "1/sqrt(lambda)"),
c(mu = "mu", lambda = "lambda", alpha = "sqrt(lambda)", nu = "sqrt(lambda)/mu", sigma = "1"))
options
}
### text fill functions -----
.ldWaldParsSupportMoments <- function(jaspResults, options){
if(options$parsSupportMoments && is.null(jaspResults[['parsSupportMoments']])){
pars <- list()
pars[[1]] <- switch(options[['parametrization']],
mulambda = gettextf("mean: %s", "μ \u2208 \u211D<sup>+</sup>"),
nusigma = gettextf("drift rate: %s", "ν \u2208 \u211D<sup>+</sup>"),
gettextf("threshold: %s", "α \u2208 \u211D<sup>+</sup>"))
pars[[2]] <- switch(options[['parametrization']],
mulambda = gettextf("shape: %s", "λ \u2208 \u211D<sup>+</sup>"),
alphanu = gettextf("drift rate: %s", "ν \u2208 \u211D<sup>+</sup>"),
gettextf("noise: %s", "σ \u2208 \u211D<sup>+</sup>"))
support <- "x \u2208 \u211D<sup>+</sup>"
moments <- list()
moments$expectation <- switch(options[['parametrization']],
mulambda = "μ",
alphanu = "α/ν",
alphasigma = "α",
nusigma = "1/ν")
moments$variance <- switch(options[['parametrization']],
mulambda = "μ<sup>3</sup>/λ",
alphanu = "α/ν<sup>3</sup>",
alphasigma = "ασ<sup>2</sup>",
nusigma = "σ<sup>2</sup>/ν<sup>3</sup>")
jaspResults[['parsSupportMoments']] <- .ldParsSupportMoments(pars, support, moments)
}
}
.ldFormulaWaldPDF <- function(options){
}
.ldFormulaWaldCDF <- function(options){
}
.ldFormulaWaldQF <- function(options){
}
#### Table functions ----
.ldFillWaldEstimatesTable <- function(table, results, options, ready){
if(!ready) return()
if(is.null(results)) return()
if(is.null(table)) return()
whichParametrization <- which(options[["parametrization"]] == c("mulambda", "alphanu", "alphasigma", "nusigma"))
par1 <- c(mu = "\u03BC", alpha = "\u03B1", alpha = "\u03B1", nu = "\u03BD")[whichParametrization]
par2 <- c(lambda = "\u03BB", nu = "\u03BD", sigma = "\u03C3", sigma = "\u03C3")[whichParametrization]
res <- results$structured
res <- res[res$par %in% names(c(par1, par2)),]
res$parName <- c(par1, par2)
if(options[["parametrization"]] %in% c("alphanu", "alphasigma", "nusigma")) {
parFixed <- switch(options[["parametrization"]],
alphanu = "\u03C3",
alphasigma = "\u03BD",
nusigma = "\u03B1")
table$addFootnote(gettextf("Parameter %s was fixed to 1.", parFixed))
}
if(results$fitdist$convergence != 0){
table$addFootnote(gettext("The optimization did not converge, try adjusting the parameter values."), symbol = gettext("<i>Warning.</i>"))
}
if(!is.null(results$fitdist$optim.message)){
table$addFootnote(results$fitdist$message, symbol = gettext("<i>Warning.</i>"))
}
table$setData(res)
return()
}
#### Distribution functions ----
dwald <- function(x, mu, lambda, log = FALSE) {
alpha <- sqrt(lambda)
nu <- alpha / mu
out <- log(alpha) - 1.0/2.0 * log(2*pi) - 3.0/2.0*log(x) - (alpha - nu*x)^2/(2*x)
out[x<=0] <- -Inf
if(!log) out <- exp(out)
return(out)
}
pwald <- function(q, mu, lambda, lower.tail = TRUE, log.p = FALSE) {
lx <- sqrt(lambda / q)
xmu <- q / mu
elmu <- exp(2*lambda / mu)
out <- ifelse(q < 0, 0,
pnorm(lx*(xmu - 1)) + elmu * pnorm(-lx * (xmu + 1)))
if(!lower.tail) out <- 1-out
if(log.p) out <- log(p)
return(out)
}
qwald <- function(p, mu, lambda, lower.tail = TRUE, log.p = FALSE) {
if(log.p) p <- exp(p)
if(!lower.tail) p <- 1-p
n <- length(p)
q <- sapply(seq_len(n), function(i) {.getQuantileWald(p[i], mu, lambda) })
return(q)
}
.getQuantileWald <- function(p, mu, lambda) {
o <- try(optim(par = mu, fn = .pErrorWald, lower = 0, upper = Inf, method = "L-BFGS-B",
p = p, pars = list(mu = mu, lambda = lambda)), silent = TRUE)
if(inherits(o, "try-error")) {
return(NA)
} else {
return(o[["par"]])
}
}
.pErrorWald <- function(q, p, pars) {
args <- c(q=q, pars)
pp <- do.call(pwald, args)
return((pp-p)^2)
}
rwald <- function(n, mu, lambda) {
nu <- rnorm(n)
y <- nu^2
x <- mu + mu^2*y / (2*lambda) - mu / (2*lambda) * sqrt(4*mu*lambda*y + mu^2*y^2)
z <- runif(n)
out <- ifelse(z <= mu / (mu + x), x, mu^2 / x)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.