#
# Copyright (C) 2013-2021 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
mlClassificationNaiveBayes <- function(jaspResults, dataset, options, ...) {
# Preparatory work
dataset <- .mlClassificationReadData(dataset, options)
.mlClassificationErrorHandling(dataset, options, type = "naivebayes")
# Check if analysis is ready to run
ready <- .mlClassificationReady(options, type = "naivebayes")
# Compute results and create the model summary table
.mlClassificationTableSummary(dataset, options, jaspResults, ready, position = 1, type = "naivebayes")
# If the user wants to add the classes to the data set
.mlClassificationAddPredictionsToData(dataset, options, jaspResults, ready)
# Add test set indicator to data
.mlAddTestIndicatorToData(options, jaspResults, ready, purpose = "classification")
# Create the data split plot
.mlPlotDataSplit(dataset, options, jaspResults, ready, position = 2, purpose = "classification", type = "naivebayes")
# Create the confusion table
.mlClassificationTableConfusion(dataset, options, jaspResults, ready, position = 3)
# Create the class proportions table
.mlClassificationTableProportions(dataset, options, jaspResults, ready, position = 4)
# Create the validation measures table
.mlClassificationTableMetrics(dataset, options, jaspResults, ready, position = 5)
# Create the variable importance table
.mlTableFeatureImportance(options, jaspResults, ready, position = 6, purpose = "classification")
# Create the shap table
.mlTableShap(dataset, options, jaspResults, ready, position = 7, purpose = "classification")
# Create the naive Bayes tables
.mlNaiveBayesTablePosterior(dataset, options, jaspResults, ready, position = 8)
# Create the ROC curve
.mlClassificationPlotRoc(dataset, options, jaspResults, ready, position = 9, type = "naivebayes")
# Create the Andrews curves
.mlClassificationPlotAndrews(dataset, options, jaspResults, ready, position = 10)
# Decision boundaries
.mlClassificationPlotBoundaries(dataset, options, jaspResults, ready, position = 11, type = "naivebayes")
}
.naiveBayesClassification <- function(dataset, options, jaspResults, ready) {
# Import model formula from jaspResults
formula <- jaspResults[["formula"]]$object
# Split the data into training and test sets
if (options[["holdoutData"]] == "testSetIndicator" && options[["testSetIndicatorVariable"]] != "") {
# Select observations according to a user-specified indicator (included when indicator = 1)
trainingIndex <- which(dataset[, options[["testSetIndicatorVariable"]]] == 0)
} else {
# Sample a percentage of the total data set
trainingIndex <- sample.int(nrow(dataset), size = ceiling((1 - options[["testDataManual"]]) * nrow(dataset)))
}
trainingSet <- dataset[trainingIndex, ]
# Create the generated test set indicator
testIndicatorColumn <- rep(1, nrow(dataset))
testIndicatorColumn[trainingIndex] <- 0
# Just create a train and a test set (no optimization)
testSet <- dataset[-trainingIndex, ]
# Check for factor levels in the test set that are not in the training set
.checkForNewFactorLevelsInPredictionSet(trainingSet, testSet, "test")
trainingFit <- e1071::naiveBayes(formula, data = trainingSet, laplace = options[["smoothingParameter"]])
# Use the specified model to make predictions for dataset
testPredictions <- predict(trainingFit, newdata = testSet, type = "class")
dataPredictions <- predict(trainingFit, newdata = dataset, type = "class")
# Create results object
result <- list()
result[["formula"]] <- formula
result[["model"]] <- trainingFit
result[["model"]]$data <- trainingSet
result[["confTable"]] <- table("Pred" = testPredictions, "Real" = testSet[, options[["target"]]])
result[["testAcc"]] <- sum(diag(prop.table(result[["confTable"]])))
result[["auc"]] <- .classificationCalcAUC(testSet, trainingSet, options, "bayesClassification")
result[["ntrain"]] <- nrow(trainingSet)
result[["ntest"]] <- nrow(testSet)
result[["testReal"]] <- testSet[, options[["target"]]]
result[["testPred"]] <- testPredictions
result[["train"]] <- trainingSet
result[["test"]] <- testSet
result[["testIndicatorColumn"]] <- testIndicatorColumn
result[["classes"]] <- dataPredictions
result[["explainer"]] <- DALEX::explain(result[["model"]], type = "classification", data = result[["train"]], y = result[["train"]][, options[["target"]]], predict_function = function(model, data) predict(model, newdata = data, type = "raw"))
if (nlevels(result[["testReal"]]) == 2) {
result[["explainer_fi"]] <- DALEX::explain(result[["model"]], type = "classification", data = result[["train"]], y = as.numeric(result[["train"]][, options[["target"]]]) - 1, predict_function = function(model, data) predict(model, newdata = data, type = "class"))
} else {
result[["explainer_fi"]] <- DALEX::explain(result[["model"]], type = "multiclass", data = result[["train"]], y = result[["train"]][, options[["target"]]] , predict_function = function(model, data) predict(model, newdata = data, type = "raw"))
}
return(result)
}
.mlNaiveBayesTablePosterior <- function(dataset, options, jaspResults, ready, position) {
if (!options[["tablePosterior"]] || !is.null(jaspResults[["tablePosterior"]])) {
return()
}
collection <- createJaspContainer(title = gettext("Posterior Statistics"))
collection$position <- position
collection$dependOn(options = c("tablePosterior", .mlClassificationDependencies()))
for (i in seq_along(options[["predictors"]])) {
table <- createJaspTable(title = gettextf("Feature: %1$s", options[["predictors"]][i]))
table$addColumnInfo(name = "level", title = "", type = "string")
table$position <- i
collection[[paste0("feature", i)]] <- table
}
jaspResults[["tablePosterior"]] <- collection
if (!ready) {
return()
}
result <- jaspResults[["classificationResult"]]$object
for (i in seq_along(options[["predictors"]])) {
if (result[["model"]]$isnumeric[i]) {
collection[[paste0("feature", i)]]$addColumnInfo(name = "mean", title = gettext("Mean"), type = "number")
collection[[paste0("feature", i)]]$addColumnInfo(name = "sd", title = gettext("Std. deviation"), type = "number")
collection[[paste0("feature", i)]]$addFootnote(gettext("The table displays the mean and standard deviation of the feature given the target class."))
tab <- cbind.data.frame(result[["model"]]$levels, result[["model"]]$tables[[options[["predictors"]][i]]])
colnames(tab) <- c("level", "mean", "sd")
} else {
tab <- matrix(result[["model"]]$tables[[options[["predictors"]][i]]], nrow = nrow(result[["model"]]$tables[[options[["predictors"]][i]]]), ncol = ncol(result[["model"]]$tables[[options[["predictors"]][i]]]))
tab <- cbind(result[["model"]]$levels, round(as.data.frame(tab), 3))
colnames(tab) <- c("level", colnames(result[["model"]]$tables[[options[["predictors"]][i]]]))
collection[[paste0("feature", i)]]$addFootnote(gettext("The table displays the conditional probabilities given the target class."))
}
collection[[paste0("feature", i)]]$setData(tab)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.