get_predictions_lm <- function(model, fitfram, ci.lvl, model_class, value_adjustment, terms, vcov.fun, vcov.type, vcov.args, condition, interval, type, ...) {
# does user want standard errors?
se <- !is.null(ci.lvl) && !is.na(ci.lvl) && is.null(vcov.fun)
# compute ci, two-ways
if (!is.null(ci.lvl) && !is.na(ci.lvl))
ci <- (1 + ci.lvl) / 2
else
ci <- .975
prdat <-
stats::predict(
model,
newdata = fitfram,
type = "response",
se.fit = se,
...
)
if (type == "sim") {
# simulate predictions
fitfram <- .do_simulate(model, terms, ci, ...)
} else if (!is.null(vcov.fun) || (!is.null(interval) && interval == "prediction")) {
# did user request standard errors? if yes, compute CI
# copy predictions
if ("fit" %in% names(prdat))
fitfram$predicted <- as.vector(prdat$fit)
else
fitfram$predicted <- as.vector(prdat)
se.pred <- .standard_error_predictions(
model = model,
prediction_data = fitfram,
value_adjustment = value_adjustment,
terms = terms,
model_class = model_class,
vcov.fun = vcov.fun,
vcov.type = vcov.type,
vcov.args = vcov.args,
condition = condition,
interval = interval
)
if (.check_returned_se(se.pred)) {
se.fit <- se.pred$se.fit
fitfram <- se.pred$prediction_data
# CI
fitfram$conf.low <- fitfram$predicted - stats::qnorm(ci) * se.fit
fitfram$conf.high <- fitfram$predicted + stats::qnorm(ci) * se.fit
# copy standard errors
attr(fitfram, "std.error") <- se.fit
attr(fitfram, "prediction.interval") <- attr(se.pred, "prediction_interval")
} else {
# CI
fitfram$conf.low <- NA
fitfram$conf.high <- NA
}
} else if (se) {
# copy predictions
fitfram$predicted <- prdat$fit
# calculate CI
fitfram$conf.low <- prdat$fit - stats::qnorm(ci) * prdat$se.fit
fitfram$conf.high <- prdat$fit + stats::qnorm(ci) * prdat$se.fit
# copy standard errors
attr(fitfram, "std.error") <- prdat$se.fit
} else {
# check if we have a multivariate response model
pdim <- dim(prdat)
if (!is.null(pdim) && pdim[2] > 1) {
tmp <- cbind(fitfram, as.data.frame(prdat))
gather.vars <- (ncol(fitfram) + 1):ncol(tmp)
fitfram <- .gather(
tmp,
names_to = "response.level",
values_to = "predicted",
colnames(tmp)[gather.vars]
)
} else {
# copy predictions
fitfram$predicted <- as.vector(prdat)
}
# no CI
fitfram$conf.low <- NA
fitfram$conf.high <- NA
}
fitfram
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.