get_predictions_svyglm <- function(model, fitfram, ci.lvl, linv, ...) {
# does user want standard errors?
se <- !is.null(ci.lvl) && !is.na(ci.lvl)
# compute ci, two-ways
if (!is.null(ci.lvl) && !is.na(ci.lvl))
ci <- (1 + ci.lvl) / 2
else
ci <- .975
# get predictions
prdat <-
stats::predict(
model,
newdata = fitfram,
type = "link",
se.fit = se,
...
)
# check if user wants standard errors
if (se) {
# get variance matrix for standard errors. "survey" stores the information
# somewhat different from classical predict function
vv <- attr(prdat, "var")
# compute standard errors
if (is.matrix(vv))
prdat <- as.data.frame(cbind(prdat, sqrt(diag(vv))))
else
prdat <- as.data.frame(cbind(prdat, sqrt(vv)))
# consistent column names
colnames(prdat) <- c("fit", "se.fit")
# copy predictions
fitfram$predicted <- linv(prdat$fit)
# calculate CI
fitfram$conf.low <- linv(prdat$fit - stats::qnorm(ci) * prdat$se.fit)
fitfram$conf.high <- linv(prdat$fit + stats::qnorm(ci) * prdat$se.fit)
# copy standard errors
attr(fitfram, "std.error") <- prdat$se.fit
} else {
# copy predictions
fitfram$predicted <- linv(as.vector(prdat))
# no CI
fitfram$conf.low <- NA
fitfram$conf.high <- NA
}
fitfram
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.