imputation.benchmark.random = function(numRow = 100, numCol = 100, numMissing = 50,
imputation.fn = NULL, ...) {
if(is.null(imputation.fn)) {
stop("A handler to an imputation function should be passed in as an argument")
}
missingX = sample(1:numRow, numMissing, replace=T)
missingY = sample(1:numCol, numMissing, replace=T)
x.missing = x = matrix(rnorm(numRow * numCol), numRow, numCol)
for (i in 1:numMissing) {
x.missing[missingX[i], missingY[i]] = NA
}
x.imputed = imputation.fn(x.missing, ...)
SE = mapply(function(missingx,missingy) {
((x[missingx, missingy] - x.imputed[missingx, missingy]) / x[missingx, missingy])^2
}, missingX, missingY)
return (
list(
data = x,
missing = x.missing,
imputed = x.imputed,
rmse = sqrt(mean(SE))
)
)
}
imputation.benchmark.ts = function(numTS = 100, TSlength = 100, numMissing = 50,
imputation.fn = NULL, ...) {
if(is.null(imputation.fn)) {
stop("A handler to an imputation function should be passed in as an argument")
}
missingX = sample(1:numTS, numMissing, replace=T)
missingY = sample(1:TSlength, numMissing, replace=T)
x.missing = x = t(sapply(1:numTS, function(i) {
rand = rnorm(1)
#Need to be careful to only generate time series that are stationary
if(rand <= 0) {
series = arima.sim(n = TSlength, list(ar = c(0.8, -0.5), ma=c(-0.23, 0.25)) )
} else if(rand > 0) {
series = arima.sim(n = TSlength, list(ar = c(1, -0.5), ma=c(-.4)) )
}
return (as.vector(series))
}))
for (i in 1:numMissing) {
x.missing[missingX[i], missingY[i]] = NA
}
x.imputed = imputation.fn(x.missing, ...)
SE = mapply(function(missingx,missingy) {
((x[missingx, missingy] - x.imputed[missingx, missingy]) / x[missingx, missingy])^2
}, missingX, missingY)
return (
list(
data = x,
missing = x.missing,
imputed = x.imputed,
rmse = sqrt(mean(SE))
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.