Description Usage Arguments Details Value Author(s) References See Also Examples
Calculates jackknife estimates.
1 2 3 4 5 6 7 |
thetahatstarjack |
Numeric vector.
Jackknife sampling distribution,
that is,
the sampling distribution of |
thetahat |
Numeric. Parameter estimate ≤ft( \hat{ θ } \right) from the original sample data. |
alpha |
Numeric vector.
Significance level
≤ft( α \right) .
By default,
|
eval |
Logical.
Evaluate confidence intervals using
|
theta |
Numeric. Population parameter ≤ft( θ \right) . |
The jackknife estimate of bias is given by
\widehat{ \mathrm{ bias } }_{ \mathrm{ jack } } ≤ft( θ \right) = ≤ft( n - 1 \right) ≤ft( \hat{ θ }_{ ≤ft( \cdot \right) } - \hat{ θ } \right)
where
\hat{ θ }_{ ≤ft( \cdot \right) } = \frac{ 1 } { n } ∑_{ i = 1 }^{ n } \hat{ θ }_{ ≤ft( i \right) } .
The jackknife estimate of standard error is given by
\widehat{ \mathrm{ se } }_{ \mathrm{ jack } } ≤ft( \hat{ θ } \right) = √{ \frac{ n - 1 } { n } ∑_{ i = 1 }^{ n } ≤ft( \hat{ θ }_{ ≤ft( i \right) } - \hat{ θ }_{ ≤ft( \cdot \right) } \right)^2 } .
The bias-corrected jackknife estimate is given by
\hat{ θ }_{ \mathrm{ jack } } = \hat{ θ } - \hat{ \mathrm{ bias } }_{ \mathrm{ jack } } ≤ft( θ \right) = n \hat{ θ } - ≤ft( n - 1 \right) \hat{ θ }_{ ≤ft( \cdot \right) } .
Pseudo-values can be computed using
\tilde{ θ }_{ i } = n \hat{ θ } - ≤ft( n - 1 \right) \hat{ θ }_{ ≤ft( i \right) } .
The standard error can be estimated using the pseudo-values
\widehat{ \mathrm{ se } }_{ \mathrm{ jack } } ≤ft( \tilde{ θ } \right) = √{ ∑_{ i = 1 }^{ n } \frac{ ≤ft( \tilde{ θ }_{ i } - \tilde{ θ } \right)^2 } { ≤ft( n - 1 \right) n } }
where
\tilde{ θ } = \frac{ 1 } { n } ∑_{ i = 1 }^{ n } \tilde{ θ }_{ i } .
An interval can be generated using
\tilde{ θ } \pm t_{ \frac{ α } { 2 } } \times \widehat{ \mathrm{ se } }_{ \mathrm{ jack } } ≤ft( \tilde{ θ } \right)
with degrees of freedom ν = n - 1 .
Returns a list with the following elements:
Jackknife estimates.
Pseudo-values.
Confidence intervals using pseudo-values.
The first list element hat
contains the following:
Mean of thetahatstarjack
≤ft( \hat{θ}_{≤ft( \cdot \right) } \right).
Jackknife estimate of bias ≤ft( \widehat{\mathrm{bias}}_{\mathrm{jack}} ≤ft( θ \right) \right).
Jackknife estimate of standard error ≤ft( \widehat{\mathrm{se}}_{\mathrm{jack}} ≤ft( \hat{θ} \right) \right).
Bias-corrected jackknife estimate ≤ft( \hat{θ}_{\mathrm{jack}} \right).
Ivan Jacob Agaloos Pesigan
Wikipedia: Jackknife resampling
Other jackknife functions:
jack()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | n <- 100
x <- rnorm(n = n)
thetahat <- mean(x)
xstar <- jack(
data = x
)
thetahatstarjack <- sapply(
X = xstar,
FUN = mean
)
str(xstar, list.len = 6)
hist(
thetahatstarjack,
main = expression(
paste(
"Histogram of ",
hat(theta),
"*"
)
),
xlab = expression(
paste(
hat(theta),
"*"
)
)
)
jack_hat(
thetahatstarjack = thetahatstarjack,
thetahat = thetahat
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.