#' @rdname run_gibbsflow_ais
#' @title Run Gibbs flow annealed importance sampler
#' @param prior list with keys:
#' \code{logdensity} evaluates log prior density,
#' \code{gradlogdensity} returns its gradient,
#' \code{rinit} samples from the prior distribution
#' @param likelihood list with keys:
#' \code{logdensity} samples from proposal,
#' \code{gradlogdensity} returns its gradient
#' @param nparticles number of particles
#' @param timegrid vector describing numerical integration times
#' @param lambda vector describing tempering schedule
#' @param derivative_lambda time derivative of tempering schedule
#' @param compute_gibbsflow function computing Gibbs flow
#' @param mcmc list with keys:
#' \code{choice} specifies type of MCMC method,
#' \code{parameters} specifies algorithmic tuning parameters,
#' \code{nmoves} specifies number of MCMC move per temperature
#' @return list with keys:
#' \code{xtrajectory} trajectories,
#' \code{xparticles} particles at terminal time,
#' \code{ess} effective sample size,
#' \code{log_normconst} log normalizing constant,
#' \code{acceptprob} MCMC acceptance probabilities
#' @seealso \code{\link{run_gibbsflow_smc}} if resampling is desired
#' @export
run_gibbsflow_ais <- function(prior, likelihood, nparticles, timegrid, lambda, derivative_lambda, compute_gibbsflow, mcmc, gibbsvelocity = NULL){
# initialization
xparticles <- prior$rinit(nparticles)
previous_logdensity <- prior$logdensity(xparticles)
# pre-allocate
dimension <- ncol(xparticles)
nsteps <- length(lambda) # same length as timegrid
stepsize <- diff(timegrid)
# xtrajectory <- array(dim = c(nparticles, dimension, nsteps))
# xtrajectory[ , , 1] <- xparticles
logweights <- rep(0, nparticles)
ess <- rep(0, nsteps)
ess[1] <- nparticles
log_normconst <- rep(0, nsteps)
acceptprob <- matrix(nrow = 2, ncol = nsteps)
acceptprob[ , 1] <- c(1, 1)
# store norm of velocity
if (!is.null(gibbsvelocity)){
normvelocity <- matrix(0, nparticles, nsteps)
normvelocity[, 1] <- sqrt(rowSums(gibbsvelocity(0, xparticles)^2))
}
for (istep in 2:nsteps){
cat("Time step:", istep, "/", nsteps, "\n")
# gibbs flow move
output_flow <- compute_gibbsflow(stepsize[istep-1], lambda[istep-1], lambda[istep], derivative_lambda[istep-1],
xparticles, previous_logdensity)
xparticles <- output_flow$xparticles
log_jacobian_dets <- as.numeric(output_flow$log_jacobian_dets)
# weight
current_logdensity <- prior$logdensity(xparticles) + lambda[istep] * likelihood$logdensity(xparticles)
logweights <- logweights + current_logdensity - previous_logdensity + log_jacobian_dets
maxlogweights <- max(logweights)
weights <- exp(logweights - maxlogweights)
normweights <- weights / sum(weights)
# compute effective sample size
ess[istep] <- 1 / sum(normweights^2)
# compute normalizing constant
log_normconst[istep] <- log(mean(weights)) + maxlogweights
# MCMC
current_logtarget <- function(x) prior$logdensity(x) + lambda[istep] * likelihood$logdensity(x)
current_gradlogtarget <- function(x) prior$gradlogdensity(x) + lambda[istep] * likelihood$gradlogdensity(x)
transition_kernel <- construct_kernel(current_logtarget, current_gradlogtarget, mcmc)
current_acceptprob <- rep(0, mcmc$nmoves)
for (imove in 1:mcmc$nmoves){
mcmc_output <- transition_kernel(xparticles, current_logdensity)
xparticles <- mcmc_output$x
current_logdensity <- mcmc_output$logtarget_x
current_acceptprob[imove] <- mcmc_output$acceptprob
}
acceptprob[ , istep] <- c(min(current_acceptprob), max(current_acceptprob))
# store trajectory
# xtrajectory[ , , istep] <- xparticles
previous_logdensity <- current_logdensity
# store norm of velocity
if (!is.null(gibbsvelocity)){
normvelocity[, istep] <- sqrt(rowSums(gibbsvelocity(timegrid[istep], xparticles)^2))
}
}
# output
if (!is.null(gibbsvelocity)){
return(list(xparticles = xparticles, ess = ess, log_normconst = log_normconst, acceptprob = acceptprob, normvelocity = normvelocity))
} else {
return(list(xparticles = xparticles, ess = ess, log_normconst = log_normconst, acceptprob = acceptprob))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.