rm(list = ls())
library(GibbsFlow)
library(tictoc)
library(ggplot2)
library(ggthemes)
library(pracma)
setmytheme()
# problem specification
dimension <- 4
parameter_sigma <- 0.55
# generate observations
set.seed(17)
true_means <- c(-3, 0, 3, 6)
mixtureweights <- rep(0.25, 4)
mixturelogweights <- log(mixtureweights)
nobservations <- 100
observations <- rep(0, nobservations)
for (i in 1:nobservations){
observations[i] <- true_means[floor((i-1)/25) + 1] + parameter_sigma * rnorm(1)
}
# prior
prior <- list()
prior$logdensity <- function(x) as.numeric(mixturemodel_logprior(x))
prior$gradlogdensity <- function(x) mixturemodel_gradlogprior(x)
prior$rinit <- function(n) mixturemodel_sampleprior(n)
# likelihood
likelihood <- list()
likelihood$logdensity <- function(x) as.numeric(mixturemodel_loglikelihood(x, observations, mixturelogweights))
likelihood$gradlogdensity <- function(x) mixturemodel_gradloglikelihood(x, observations, mixturelogweights)
compute_gibbsflow <- function(stepsize, lambda, lambda_next, derivative_lambda, x, logdensity, obs)
mixturemodel_gibbsflow(stepsize, lambda, derivative_lambda, x, logdensity, observations = observations, mixturelogweights)
# gibbs velocity
exponent <- 2
gibbs_velocity <- function(t, x){
output <- as.matrix(mixturemodel_gibbsvelocity(t, x, exponent, observations, mixturelogweights))
return(output)
}
# plot stepsize taken by adaptive integrator for four trajectories
nrepeats <- 4
plot.df <- data.frame()
for (i in 1:nrepeats){
# initialize
initial_condition <- as.numeric(prior$rinit(1))
# run numerical integrator ode45
output <- ode45(f = gibbs_velocity, t0 = 0, tfinal = 1, y0 = initial_condition)
# atol = 1e-8, hmax = 1e-3)
# examine stepsize
stepsizes <- diff(output$t)
min_step <- min(stepsizes)
cat("Minimum stepsize taken by ode45:", min_step, "\n")
# examine number of steps
nsteps <- length(output$t)
cat("Number of steps taken by ode45:", nsteps, "\n")
# print terminal position
cat(tail(output$y,1), "\n")
# store stuff for plotting
plot.df <- rbind(plot.df, data.frame(time = output$t, stepsize = c(0, stepsizes),
trajectory = factor(rep(i, nsteps))))
}
gtrajectory <- ggplot(data = plot.df) + geom_line(aes(x = time, y = stepsize, colour = trajectory)) +
scale_color_colorblind()
gtrajectory
ggsave(filename = "~/Dropbox/GibbsFlow/draft_v3/mixturemodel_stepsizes.eps", plot = gtrajectory,
device = "eps", width = 6, height = 6)
# repeats to investigate number of time steps and minimum step size taken by adaptive integrator
nrepeats <- 2^10
min_stepsize <- rep(0, nrepeats)
total_nsteps <- rep(0, nrepeats)
for (i in 1:nrepeats){
cat("Repeat", i, "/", nrepeats, "\n")
# initialize
initial_condition <- as.numeric(prior$rinit(1))
# run numerical integrator ode45
output <- ode45(f = gibbs_velocity, t0 = 0, tfinal = 1, y0 = initial_condition)
# atol = 1e-8, hmax = 1e-3)
# examine stepsize
stepsizes <- diff(output$t)
min_step <- min(stepsizes)
min_stepsize[i] <- min_step
cat("Minimum stepsize taken by ode45:", min_step, "\n")
# examine number of steps
nsteps <- length(output$t)
total_nsteps[i] <- nsteps
cat("Number of steps taken by ode45:", nsteps, "\n")
# print terminal position
cat(tail(output$y,1), "\n")
}
save(min_stepsize, total_nsteps, file = "inst/mixturemodel/gibbsflow_integration.RData", safe = F)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.