# This script generates data for estimation of the convergence of the estimator for the gradient
# the data is utilized for calculation of the ground truth value through increased resouliton of simulations
# and higher number of realizations
rm(list=ls())
library(Rcpp)
library(RcppCNPy)
library(UnbiasedMultilevel)
set.seed(1)
xdata_ref = npyLoad("./covid19_data.npy")
dimension <- 3 # dimension of model parameters space
u0 <- array(rep(0, dimension), dim = c(dimension))
scaling_factor <- array(rep(1, dimension), dim = c(dimension))
# middle values for model parameters
u0[1] = 0.001
u0[2] = 0.300
u0[3] = 5.000
# scaling factor for model parameters
scaling_factor[1] = 0.001
scaling_factor[2] = 0.200
scaling_factor[3] = 5.000
umid_param = 0.0 + u0
sf_param = 0.0 + scaling_factor
alpha_param = 1.0 # shape of the gamma distribution
beta_param = 1.0 # scale of the gamma distribution
log_lh_fun <- function(u, l, alpha_m = alpha_param, beta_m = beta_param,
xdata = xdata_ref, umid = umid_param, sf = sf_param)
{
# output: log(likelihood) + log(prior)
# u - vector of model parameters
# l - level
# alpha_m = alpha_param - shape of the gamma distribution
# beta_m = beta_param - scale of the gamma distribution
# umid = umid_param - shift of model parametsr
# sf = sf_param - shift of model parameters
# xdata = xdata_ref - vector of observations
nu = length(u) # dimesnion of model parameters
umin = umid - sf # calculation of the lower boundaries of model parameters
umax = umid + sf # calculation of the upper boundaries of model parameters
ustar = 0.0 + umid # valud of actual parameters of the ODE
for(k0 in 1 : nu)
{
ustar[k0] = umid[k0] + sf[k0] * u[k0]
}
llh = 0.0
# contribution of the prior diatribution
for(k in 1 : length(umid))
{
if(umin[k] < ustar[k] && ustar[k] < umax[k] && is.finite(llh))
{
llh = llh + log(2.0 * sf[k])
}
else
{
llh = - Inf
}
}
# contribution of the likelihood function
if(is.finite(llh))
{
nmin = 29 # first day of observations
nmax = 52 # last day of observations
xmeas = observation_covid19(ustar, l) # model predictions
xmetric = log(xmeas[nmin : nmax]) - log(xdata[nmin : nmax]) # difference from true observations
# log density of the gamma distribution
for (k in 1 : length(xmetric))
{
if(xmetric[k] > 0 && is.finite(llh))
{
llh = llh + dgamma(xmetric[k], alpha_m, scale=beta_m, log=TRUE)
}
else
{
llh = - Inf
}
}
}
return(llh)
}
grad_log_lh_fun <- function(u, l, alpha_m = alpha_param, beta_m = beta_param,
xdata = xdata_ref, umid = umid_param, sf = sf_param)
{
# output: d(log(likelihood) + log(prior)) / du
# u - vector of model parameters
# l - level
# alpha_m = alpha_param - shape of the gamma distribution
# beta_m = beta_param - scale of the gamma distribution
# umid = umid_param - shift of model parametsr
# sf = sf_param - shift of model parameters
# xdata = xdata_ref - vector of observations
nu = length(u)
ustar = 0.0 + umid
for(k in 1 : nu)
{
ustar[k] = ustar[k] + sf[k] * u[k]
}
xmeas = observation_covid19(ustar, l)
xmeas_grad = observation_grad_covid19(ustar, l)
grad_llh = 0.0 * u
nmin = 29
nmax = 52
xmetric = log(xmeas[nmin : nmax]) - log(xdata[nmin : nmax])
xmetric_grad = xmeas_grad[nmin : nmax, 1 : nu]
for(k0 in 1 : nu)
{
for(k1 in 1 : length(xmetric))
{
xmetric_grad[k1, k0] = xmetric_grad[k1, k0] * sf[k0] / xmeas[nmin + k1 - 1]
}
}
for (k0 in 1 : nu)
{
for (k in 1 : length(xmetric))
{
if(xmetric[k] > 0)
{
grad_llh[k0] = grad_llh[k0] + ((alpha_m - 1.0) / xmetric[k] - 1.0 / beta_m) * xmetric_grad[k, k0]
}
}
}
return(grad_llh)
}
objective_function <- function(u, l, alpha_m = alpha_param, beta_m = beta_param,
xdata = xdata_ref, umid = umid_param, sf = sf_param)
{
# output: d(log(likelihood) + log(prior)) / dalpha_param, d(log(likelihood) + log(prior)) / dbeta_param
# u - vector of model parameters
# l - level
# alpha_m = alpha_param - shape of the gamma distribution
# beta_m = beta_param - scale of the gamma distribution
# umid = umid_param - shift of model parametsr
# sf = sf_param - shift of model parameters
# xdata = xdata_ref - vector of observations
nu = length(u)
nv = 2
llh_grad <- array(rep(0, nv), dim = c(nv)) # memory allocation for the output variable
ustar = 0.0 + umid # calculations of ODE parameters
for(k in 1 : nu)
{
ustar[k] = umid[k] + sf[k] * u[k]
}
nmin = 29
nmax = 52
xmeas = observation_covid19(ustar, l) # model predictions
xmetric = log(xmeas[nmin : nmax]) - log(xdata[nmin : nmax]) # argument of the Gamma distribution
# derivative with repect to shape parameter (alpha)
llh_grad_term = 0.0
for(k in 1 : length(xmetric))
{
if(xmetric[k] > 0)
{
llh_grad_term = llh_grad_term + log(xmetric[k])
}
}
llh_grad_term = llh_grad_term - length(xmetric) * digamma(alpha_m) - length(xmetric) * log(beta_m)
llh_grad[1] = llh_grad[1] + llh_grad_term
# derivative with repect to scale parameter (beta)
llh_grad_term = 0.0
llh_grad_term = sum(xmetric) / beta_m / beta_m - length(xmetric) * alpha_m / beta_m
llh_grad[2] = llh_grad[2] + llh_grad_term
return(llh_grad)
}
init_pl <- function(beta, lmax=20)
{
# probability distribution over levels: w[l] = P_L(l - 1)
# lmax - trunction of the P_L
# beta - rate of the decay
w = 1 : lmax
w = 2.0 ^ (-beta * w)
w = w / sum(w)
return(w)
}
get_l_sample <- function(w)
{
# sample l from P_l
u = runif(1, min=0.0, max=1.0)
lmax = length(w)
l0 = 0
w0 = 1.0
wsum = 0.0
for(l in (1:lmax))
{
wsum = sum(w[1 : l])
if(wsum < u)
{
l0 = l
}
}
return(l0)
}
# specify sequence of target distributions
dimension <- 2
logtarget <- function(l, x) log_lh_fun(x, l)
gradlogtarget <- function(l, x) grad_log_lh_fun(x, l)
level <- 0 # level
# vary levels
nrepeats <- 100
constant <- 0.01 # fix tuning parameters across levels for simplicity (could vary this!)
stepsize <- 0.001
nsteps <- 1 + 2 * floor(1 / stepsize) # set integration time to approximately one
probability_maximal_coupling <- 0.10 # probability of selecting the maximal coupling
proposal_sd = 1.0
proposal_rho = 0.95
tuning <- list(proposal_sd = proposal_sd, proposal_rho = proposal_rho)
tuning_fine <- list(proposal_sd = proposal_sd, proposal_rho = proposal_rho)
tuning_coarse <- list(proposal_sd = proposal_sd, proposal_rho = proposal_rho)
rinit <- function(level)
{
# sample roughly from prior until you get the finine likelihood
for(k in 1 : 1)
{
chain_state <- runif(dimension, min = -0.9, max = 0.9)
current_pdf <- logtarget(level, chain_state)
if(is.finite(current_pdf) == FALSE)
{
k = 1
}
}
return(list(chain_state = chain_state, current_pdf = current_pdf))
}
beta = (8.0 + 1.0) / 2.0
w = init_pl(beta)
k0 = 500 # k from the paper
m0 = 2 * k0 # m form the paper
niter = 10000 # number os SGD steps
nreal = 1 # number of realisations
nv = 2 # dimension of the paramet space (of the gradient in sgd)
nlevel = 5
gf = 0.2 # factor for the SGD step-size. SGD step size is gf / sgd_step
xval = array(rep(0, nv, dim = c(nv)))
for(kreal in 1 : nreal)
{
# memory allocation
sgd_vec <- array(rep(0, niter * nv), dim = c(niter, nv))
xval = array(rep(0, nv), dim = c(nv))
nopr <- array(rep(0, niter), dim = c(niter)) # total operations counter
alpha_param = 1.0 # shape of the gamma distribution
beta_param = 1.0 # scale of the gamma distribution
for(kiter in 1 : niter)
{
# sgd_vec = 0.0 * sgd_vec
xval = 0.0 * xval
vlevel = get_l_sample(w)
if(vlevel == 0)
{
x_expect = unbiased_expectation(level = 2 + vlevel,
rinit = rinit,
single_kernel = single_pcn_kernel,
tuning = tuning,
coupled_kernel = coupled2_pcn_kernel,
proposal_coupling = reflectionmaximal2_pcn_coupling,
h = function(l, x) objective_function(x, l),
k = k0, m = m0,
max_iterations = Inf)
xval <- xval + x_expect$uestimator / w[1 + vlevel]
nopr[kiter] = x_expect$cost
}
if(vlevel > 0)
{
x_increm = unbiased_increment(level = 2 + vlevel,
rinit = rinit,
single_kernel = single_pcn_kernel,
coupled2_kernel = coupled2_pcn_kernel_extra_level,
coupled4_kernel = coupled4_pcn_kernel,
proposal_coupling2 = synchronous2_pcn_coupling,
proposal_coupling4 = reflectionmaximal4_pcn_synchronous_coupling,
tuning = tuning,
tuning_coarse = tuning,
tuning_fine = tuning,
h = function(l, x) objective_function(x, l),
k = k0, m = m0,
sampling_factor = min(0.5, 1.0 / (2.0 ^ (4 * vlevel + 1))),
max_iterations = Inf)
xval <- xval + x_increm$uestimator / w[1 + vlevel]
nopr[kiter] = x_increm$cost
}
sgd_vec[kiter, 1 : nv] = 0.0 + xval[1 : nv]
fname = paste0("./covid19_single_value_acc_pcn_nreal_", kreal, ".rds")
saveRDS(sgd_vec, file = fname)
fname = paste0("./covid19_single_value_acc_pcn_nreal_", kreal, ".npy")
npySave(fname, sgd_vec)
fname = paste0("./covid19_nopr_sv_acc_pcn_nreal_", kreal, ".rds")
saveRDS(nopr, file = fname)
fname = paste0("./covid19_nopr_sv_acc_pcn_nreal_", kreal, ".npy")
npySave(fname, nopr)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.