# This script generates data for estimation of the convergence of the estimator for the gradient
# the data is utilized for calculation of the ground truth value through increased resouliton of simulations
# and higher number of realizations
rm(list=ls())
library(Rcpp)
library(RcppCNPy)
library(UnbiasedMultilevel)
xdata_ref = npyLoad("./inverseproblem_data.npy") # load the generated data
theta_param = 0.1 # theta parameter from the paper (1 / std^2) std - standard deviation in the likelihood
log_lh_fun <- function(u, l, theta_m = theta_param, xdata = xdata_ref, log_theta_mu = 0.0, log_theta_sd = 1.0)
{
# output: log(likelihood) + log(prior)
# u - vector of model parameters
# l - level
# theta parameter from the paper (1 / std^2) std - standard deviation in the likelihood
# xdata = xdata_ref - data, or vector of observations
# log-noraml prior on theta is supposed
# log_theta_mu - mean value for log-normal prior on theta
# log_theta_sd - standard deviation value for log-normal prior on theta
nu = length(u) # dimension of u
umin <- array(rep(0, nu), dim = c(nu)) # lower boundaries of prior
umax <- array(rep(0, nu), dim = c(nu)) # upper boundaries of prior
for(k in 1 : nu)
{
umin[k] = -1.0
umax[k] = 1.0
}
llh = 0.0 # output variable
out_of_domain = FALSE # check if u is in the domain of prior distribution or not
for (k in 1 : nu)
{
# if inside -> add contribution of the prior
if((umin[k] < u[k]) && (u[k] < umax[k]))
{
llh = llh + log(umax[k] - umin[k])
}
# otherwise - set flag for out_of_domain
else
{
out_of_domain = TRUE
}
}
# if out_of_fomain - probability is zeros -> output log(0) = -Inf
if(out_of_domain)
{
llh = -Inf
}
# otherwise - compute the contribution of the likelihood
else
{
xmeas = observation_inverseproblem(u, l)
# contribution of the likelihood
for (k in 1 : length(xmeas))
{
llh = llh - 0.5 * log(2.0 * 3.1415926) + 0.5 * log(theta_m)
llh = llh - 0.5 * theta_m * (xmeas[k] - xdata[k]) * (xmeas[k] - xdata[k])
}
# contribution of the prior distribution on theta: lognormal prior on theta
llh = llh - 0.5 * log(2.0 * 3.1415926) - log(log_theta_sd)
llh = llh - log(theta_m)
llh = llh - (log(theta_m) - log_theta_mu) * (log(theta_m) - log_theta_mu) / log_theta_sd / log_theta_sd / 2.0
}
return(llh)
}
grad_log_lh_fun <- function(u, l, theta_m = theta_param, xdata = xdata_ref, log_theta_mu = 0.0, log_theta_sd = 1.0)
{
# output: derivatives of (log(likelihood) + log(prior))
# with respect to model parameters: u
# u - vector of model parameters
# l - level
# theta parameter from the paper (1 / std^2) std - standard deviation in the likelihood
# xdata = xdata_ref - vector of observations
# log-noraml prior on theta is supposed
# log_theta_mu - mean value for log-normal prior on theta
# log_theta_sd - standard deviation value for log-normal prior on theta
nu = length(u) # dimension of model parameter vector
xmeas = observation_inverseproblem(u, l) # observation for vector of model parameters u and level l
xmeas_grad = observation_grad_inverseproblem(u, l) # derivatives of the numerical solution with respect to u at u and level l
grad_llh = 0.0 * u # init output
for(k0 in 1 : nu)
{
for(k in 1 : length(xmeas))
{
grad_llh[k0] = grad_llh[k0] - theta_m * (xmeas[k] - xdata[k]) * xmeas_grad[k, k0]
}
}
return(grad_llh)
}
objective_function <- function(u, l, theta_m = theta_param, xdata = xdata_ref, log_theta_mu = 0.0, log_theta_sd = 1.0)
{
# gradient of log(Bayesian_evidence_factor) with respect to theta
# output: dlog(Bayesian_evidence_factor) / dtheta_param
# u - vector of model parameters
# l - level
# sigma_u = su_param - std of the prior distribution
# sigma_m = sm_param - std of the likelihood
# xdata = xdata_ref - vector of observations
# log-noraml prior on theta is supposed
# log_theta_mu - mean value for log-normal prior on theta
# log_theta_sd - standard deviation value for log-normal prior on theta
nu = length(u)
nv = 3
llh_grad <- array(rep(0, nv), dim = c(nv))
xmeas = observation_inverseproblem(u, l)
# contribution of the likelihood
for (k in 1 : length(xmeas))
{
llh_grad[1] = llh_grad[1] + 0.5 * (1.0 / theta_m - (xmeas[k] - xdata[k]) * (xmeas[k] - xdata[k]))
}
# contribution of the prior on theta
llh_grad[1] = llh_grad[1] - (log(theta_m) - log_theta_mu) / log_theta_sd / log_theta_sd / theta_m
llh_grad[1] = llh_grad[1] - 1.0 / theta_m
llh_grad[2] = u[1]
llh_grad[3] = u[2]
return(llh_grad)
}
init_pl <- function(beta, lmax=20)
{
# probability distribution over levels: w[l] = P_L(l - 1)
# lmax - trunction of the P_L
# beta - rate of the decay
w = 1 : lmax
w = 2.0 ^ (-beta * w)
w = w / sum(w)
return(w)
}
get_l_sample <- function(w)
{
# sample l from P_l
u = runif(1, min=0.0, max=1.0)
lmax = length(w)
l0 = 0
w0 = 1.0
wsum = 0.0
for(l in (1:lmax))
{
wsum = sum(w[1 : l])
if(wsum < u)
{
l0 = l
}
}
return(l0)
}
# specify sequence of target distributions
dimension <- 2
logtarget <- function(l, x) log_lh_fun(x, l)
gradlogtarget <- function(l, x) grad_log_lh_fun(x, l)
level <- 0 # level
# vary levels
nrepeats <- 100
constant <- 0.01 # fix tuning parameters across levels for simplicity (could vary this!)
stepsize <- 0.001
nsteps <- 1 + 2 * floor(1 / stepsize) # set integration time to approximately one
probability_maximal_coupling <- 0.10 # probability of selecting the maximal coupling
proposal_sd = 1.0
proposal_rho = 0.95
tuning <- list(proposal_sd = proposal_sd, proposal_rho = proposal_rho)
tuning_fine <- list(proposal_sd = proposal_sd, proposal_rho = proposal_rho)
tuning_coarse <- list(proposal_sd = proposal_sd, proposal_rho = proposal_rho)
rinit <- function(level){
chain_state <- runif(dimension, min=-0.9, max=0.9)
current_pdf <- logtarget(level, chain_state)
return(list(chain_state = chain_state, current_pdf = current_pdf))
}
beta = (4.0 + 1.0) / 2.0 # value of P_L(l) decay
w = init_pl(beta) # values of P_L(l)
k0 = 100 # k from the paper
m0 = 10 * k0 # m form the paper
niter = 10000 # number os SGD steps
nreal = 1 # number of realisations
nv = 3 # dimension of the paramet space (of the gradient in sgd)
nlevel = 10
gf = 0.2 # factor for the SGD step-size. SGD step size is gf / sgd_step
xval = array(rep(0, nv, dim = c(nv)))
for(kreal in 1 : nreal)
{
# memory allocation
sgd_vec <- array(rep(0, niter * nv), dim = c(niter, nv))
xval = array(rep(0, nv), dim = c(nv))
nopr <- array(rep(0, niter), dim = c(niter)) # total operations counter
theta_param = 1.0 # std of likelihood function
for(kiter in 1 : niter)
{
# sgd_vec = 0.0 * sgd_vec
xval = 0.0 * xval
vlevel = get_l_sample(w)
if(vlevel == 0)
{
x_expect = unbiased_expectation(level = 5 + vlevel,
rinit = rinit,
single_kernel = single_pcn_kernel,
tuning = tuning,
coupled_kernel = coupled2_pcn_kernel,
proposal_coupling = reflectionmaximal2_pcn_coupling,
h = function(l, x) objective_function(x, l),
k = k0, m = m0,
max_iterations = Inf)
xval <- xval + x_expect$uestimator / w[1 + vlevel]
nopr[kiter] = x_expect$cost
}
if(vlevel > 0)
{
x_increm = unbiased_increment_fresh_start_two_pairs(level = 5 + vlevel,
rinit = rinit,
single_kernel = single_pcn_kernel,
coupled2_kernel = coupled2_pcn_kernel_extra_level,
coupled4_kernel = coupled4_pcn_kernel,
proposal_coupling2 = synchronous2_pcn_coupling,
proposal_coupling4 = reflectionmaximal4_pcn_synchronous_coupling,
tuning = tuning,
tuning_coarse = tuning,
tuning_fine = tuning,
h = function(l, x) objective_function(x, l),
k = k0, m = m0,
sampling_factor = min(0.5, 1.0 / (2.0 ^ (2 * vlevel + 1))),
max_iterations = Inf)
xval <- xval + x_increm$uestimator / w[1 + vlevel]
nopr[kiter] = x_increm$cost
}
sgd_vec[kiter, 1 : nv] = 0.0 + xval[1 : nv]
fname = paste0("./inverseproblem_single_value_acc_pcn_nreal_", kreal, ".rds")
saveRDS(sgd_vec, file = fname)
fname = paste0("./inverseproblem_single_value_acc_pcn_nreal_", kreal, ".npy")
npySave(fname, sgd_vec)
fname = paste0("./inverseproblem_nopr_sv_acc_pcn_nreal_", kreal, ".rds")
saveRDS(nopr, file = fname)
fname = paste0("./inverseproblem_nopr_sv_acc_pcn_nreal_", kreal, ".npy")
npySave(fname, nopr)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.