#' Additive Effect of Treatment Among the Treated
#'
#' Parameter definition for the Additive Effect of Treatment Among the Treated (ATT). Currently supports multiple static intervention nodes.
#' Does yet not support dynamic rule or stochastic interventions.
#'
#' @section Current Issues:
#' \itemize{
#' \item clever covariates doesn't support updates; always uses initial (necessary for iterative TMLE, e.g. stochastic intervention)
#' \item doesn't integrate over possible counterfactuals (necessary for stochastic intervention)
#' \item clever covariate gets recalculated all the time (inefficient)
#' }
#' @importFrom R6 R6Class
#' @importFrom uuid UUIDgenerate
#' @importFrom methods is
#' @family Parameters
#' @keywords data
#'
#' @return \code{Param_base} object
#'
#' @format \code{\link{R6Class}} object.
#'
#' @section Constructor:
#' \code{define_param(Param_ATT, observed_likelihood, intervention_list, ..., outcome_node)}
#'
#' \describe{
#' \item{\code{observed_likelihood}}{A \code{\link{Likelihood}} corresponding to the observed likelihood
#' }
#' \item{\code{intervention_list_treatment}}{A list of objects inheriting from \code{\link{LF_base}}, representing the treatment intervention.
#' }
#' \item{\code{intervention_list_control}}{A list of objects inheriting from \code{\link{LF_base}}, representing the control intervention.
#' }
#' \item{\code{...}}{Not currently used.
#' }
#' \item{\code{outcome_node}}{character, the name of the node that should be treated as the outcome
#' }
#' }
#'
#' @section Fields:
#' \describe{
#' \item{\code{cf_likelihood_treatment}}{the counterfactual likelihood for the treatment
#' }
#' \item{\code{cf_likelihood_control}}{the counterfactual likelihood for the control
#' }
#' \item{\code{intervention_list_treatment}}{A list of objects inheriting from \code{\link{LF_base}}, representing the treatment intervention
#' }
#' \item{\code{intervention_list_control}}{A list of objects inheriting from \code{\link{LF_base}}, representing the control intervention
#' }
#' }
#' @export
Param_ATT <- R6Class(
classname = "Param_ATT",
portable = TRUE,
class = TRUE,
inherit = Param_base,
public = list(
initialize = function(observed_likelihood, intervention_list_treatment, intervention_list_control, outcome_node = "Y") {
super$initialize(observed_likelihood, list(), outcome_node)
private$.cf_likelihood_treatment <- CF_Likelihood$new(observed_likelihood, intervention_list_treatment)
private$.cf_likelihood_control <- CF_Likelihood$new(observed_likelihood, intervention_list_control)
},
clever_covariates = function(tmle_task = NULL, fold_number = "full") {
if (is.null(tmle_task)) {
tmle_task <- self$observed_likelihood$training_task
}
# todo: actually the union of the treatment and control nodes?
intervention_nodes <- names(self$intervention_list_treatment)
# todo: make sure we support updating these params
pA <- self$observed_likelihood$get_likelihoods(tmle_task, intervention_nodes, fold_number)
cf_pA_treatment <- self$cf_likelihood_treatment$get_likelihoods(tmle_task, intervention_nodes, fold_number)
cf_pA_control <- self$cf_likelihood_control$get_likelihoods(tmle_task, intervention_nodes, fold_number)
cf_task_treatment <- self$cf_likelihood_treatment$cf_tasks[[1]]
cf_task_control <- self$cf_likelihood_control$cf_tasks[[1]]
pA1 <- self$observed_likelihood$get_likelihoods(cf_task_treatment, intervention_nodes, fold_number)
pA1_overall <- mean(pA1)
HA <- (cf_pA_treatment - cf_pA_control * (pA1 / (1 - pA1)))
EY1 <- self$observed_likelihood$get_likelihoods(cf_task_treatment, self$outcome_node, fold_number)
EY0 <- self$observed_likelihood$get_likelihoods(cf_task_control, self$outcome_node, fold_number)
psi <- mean((EY1 - EY0) * (pA1 / pA1_overall))
CY <- (EY1 - EY0) - psi
return(list(A = CY, Y = HA))
},
estimates = function(tmle_task = NULL, fold_number = "full") {
if (is.null(tmle_task)) {
tmle_task <- self$observed_likelihood$training_task
}
# todo: actually the union of the treatment and control nodes?
intervention_nodes <- names(self$intervention_list_treatment)
# todo: make sure we support updating these params
# pA <- self$observed_likelihood$get_likelihoods(tmle_task, intervention_nodes, fold_number)
# pA_overall <- mean(pA)
cf_pA_treatment <- self$cf_likelihood_treatment$get_likelihoods(tmle_task, intervention_nodes, fold_number)
# cf_pA_control <- self$cf_likelihood_control$get_likelihoods(tmle_task, intervention_nodes, fold_number)
cf_task_treatment <- self$cf_likelihood_treatment$cf_tasks[[1]]
cf_task_control <- self$cf_likelihood_control$cf_tasks[[1]]
pA1 <- self$observed_likelihood$get_likelihoods(cf_task_treatment, intervention_nodes, fold_number)
pA1_overall <- mean(pA1)
EY <- self$observed_likelihood$get_likelihood(tmle_task, self$outcome_node, fold_number)
EY1 <- self$observed_likelihood$get_likelihood(cf_task_treatment, self$outcome_node, fold_number)
EY0 <- self$observed_likelihood$get_likelihood(cf_task_control, self$outcome_node, fold_number)
psi <- mean((EY1 - EY0) * (pA1 / pA1_overall))
Y <- tmle_task$get_tmle_node(self$outcome_node)
clever_covariates <- self$clever_covariates(tmle_task, fold_number)
HA <- clever_covariates$Y
CY <- clever_covariates$A
IC <- (HA * (Y - EY) + CY * cf_pA_treatment) / pA1_overall
result <- list(psi = psi, IC = IC)
return(result)
}
),
active = list(
name = function() {
param_form <- sprintf("ATT[%s_{%s}-%s_{%s}]", self$outcome_node, self$cf_likelihood_treatment$name, self$outcome_node, self$cf_likelihood_control$name)
return(param_form)
},
cf_likelihood_treatment = function() {
return(private$.cf_likelihood_treatment)
},
cf_likelihood_control = function() {
return(private$.cf_likelihood_control)
},
intervention_list_treatment = function() {
return(self$cf_likelihood_treatment$intervention_list)
},
intervention_list_control = function() {
return(self$cf_likelihood_control$intervention_list)
},
update_nodes = function() {
return(c(self$outcome_node, names(self$intervention_list_treatment)))
}
),
private = list(
.type = "ATT",
.cf_likelihood_treatment = NULL,
.cf_likelihood_control = NULL
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.