coviData::download_integrated_data(force = TRUE)
data <- coviData::load_integrated_data(date = Sys.Date()) %>%
preprocess()
data %>%
dplyr::filter(!is.na(infecstart) & !is.na(infecend)) %>%
dplyr::mutate(
some_address = dplyr::coalesce(
emp1address,
emp1address_10,
emp1address_7,
emp1address_19,
cont_exp_t3,
cont_exp_t16,
exphealth_2,
non_health_3,
name_sch_3,
exposure1details4,
exposure1details14,
exposure1details15
)
) %>%
dplyr::filter(!is.na(some_address)) %>%
dplyr::select(-some_address) %>%
tidyr::pivot_longer(
cols = c(
emp1address,
emp1address_10,
emp1address_7,
emp1address_19,
cont_exp_t3,
cont_exp_t16,
exphealth_2,
non_health_3,
name_sch_3,
exposure1details4,
exposure1details14,
exposure1details15
),
names_to = "new_address_field",
values_to = "new_address"
) %>%
dplyr::mutate(
clustered_address = new_address %>% refinr::key_collision_merge()
) %>%
dplyr::mutate(
infecstart = lubridate::as_date(infecstart),
infecend = lubridate::as_date(infecend)
) ->
clean_addresses
clean_addresses %>%
dplyr::count(student) %>%
dplyr::arrange(dplyr::desc(n))
clean_addresses %>%
dplyr::filter(student == "Yes") %>%
dplyr::count(school_type) %>%
dplyr::arrange(dplyr::desc(n))
clean_addresses %>%
dplyr::transmute(
record_id,
clustered_address,
exposure_window = lubridate::interval(
start = infecstart - 12,
end = infecstart - 1
) %>% lubridate::int_standardize(),
infection_window = lubridate::interval(
start = infecstart,
end = infecend
)
) ->
intervals
intervals %>%
dplyr::mutate(
exposure_id = record_id,
infection_id = record_id,
exposure_address = clustered_address,
infection_address = clustered_address
) %>%
tidyr::expand(nesting(infection_address, infection_id, infection_window), nesting(exposure_address, exposure_id, exposure_window)) %>%
dplyr::filter(
lubridate::int_overlaps(exposure_window, infection_window),
exposure_address == infection_address,
infection_id != exposure_id
) %>%
dplyr::transmute(clustered_address = infection_address, infection_id, infection_window, exposure_id, exposure_window) %>%
dplyr::arrange(clustered_address, infection_window, exposure_window, infection_id, exposure_id)
address_cluster_data
openxlsx::write.xlsx(address_cluster_data, file = "V:/EPI DATA ANALYTICS TEAM/Cluster Analysis/address_clusters.xlsx")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.