#' Plot Cumulative Case Time Series
#'
#' @param data Case data (by person) from NBS, as output by
#' \code{\link[coviData:process-nbs]{pos(process_inv())}}
#'
#' @param date The download date of `data`; the default is the most recent
#'
#' @return A `ggplot` object
#'
#' @export
case_plot_cumulative <- function(
data = pos(process_inv(read_inv(date = date))),
date = NULL
) {
# Minimum plot date
min_date <- lubridate::as_date("2020-03-08")
# Date for current (and previous) counts
date <- date_inv(date)
# Label numbers
n_total <- NROW(data)
n_prev <- NROW(read_inv_id(date = date - 1L))
n_new <- n_total - n_prev
# Loading report dates in `case_plot_cumulative()` rather than
# `prep_cumulative_data()` due to limitations in testing
rpt_data <- dplyr::as_tibble(coviData::load_report_date())
data %>%
prep_cumulative_data(
min_date = min_date,
date = date,
rpt_data = rpt_data
) %>%
ggplot2::ggplot(
ggplot2::aes(x = .data[["report_date"]], y = .data[["n"]])
) %>%
set_cumulative_theme() %>%
add_cumulative_scale() %>%
add_cumulative_curve() %>%
add_cumulative_label(total = n_total, new = n_new) %>%
add_cumulative_axis_labels() %>%
add_cumulative_title_caption(date = date)
}
#' Prepare Case Data for Cumulative Plotting
#'
#' `prep_cumulative_data` merges case data with report dates and calculates
#' the \code{\link[base:cumsum]{cumsum()}} for each report date (implicitly
#' missing dates are made explicit, and all missing daily counts are set to `0`
#' before taking the cumulative sum). For data that start after `min_date`,
#' cumulative counts are interpolated from `1` to the count at the minimum
#' report date.
#'
#' @inheritParams case_plot_cumulative
#'
#' @param min_date The minimum date to be plotted
#'
#' @param rpt_data `tibble` of `inv_local_id` and `report_date`
#'
#' @return A `tibble` with columns `report_date` (as `Date`) and `n`
#' (cumulative counts, incl. interpolated values)
#'
#' @noRd
prep_cumulative_data <- function(
data,
min_date,
date,
rpt_data = dplyr::as_tibble(coviData::load_report_date())
) {
# Coerce dates
min_date <- lubridate::as_date(min_date)
date <- lubridate::as_date(date)
gg_data <- data %>%
dplyr::left_join(rpt_data, by = "inv_local_id") %>%
dplyr::mutate(report_date = lubridate::as_date(.data[["report_date"]])) %>%
dplyr::filter(
{{ min_date }} <= .data[["report_date"]],
.data[["report_date"]] <= {{ date }}
) %>%
dplyr::arrange(.data[["report_date"]], .data[["inv_local_id"]]) %>%
dplyr::distinct(.data[["inv_local_id"]], .keep_all = TRUE) %>%
dplyr::count(.data[["report_date"]]) %>%
tidyr::complete(
"report_date" = seq(
min(.data[["report_date"]], na.rm = TRUE),
max(.data[["report_date"]], na.rm = TRUE),
by = 1L
),
fill = list(n = 0L)
) %>%
dplyr::mutate(n = cumsum(.data[["n"]]))
# Need to ensure data starts at `min_date`
min_report_date <- min(gg_data[["report_date"]], na.rm = TRUE)
# Data is already limited to dates after `min_date`
# Return if no further transformation is needed
if (min_report_date <= min_date) return(gg_data)
# Otherwise, interpolate from `min_date` to `min_report_date`
min_n <- min(gg_data[["n"]], na.rm = TRUE)
x_in <- c(min_date, min_report_date)
y_in <- c(1L, min_n)
x_out <- seq(x_in[[1L]], x_in[[2L]] - 1L, by = 1L)
stats::spline(x = x_in, y = y_in, xout = x_out) %>%
dplyr::as_tibble() %>%
dplyr::transmute(
report_date = lubridate::as_date(.data[["x"]]),
n = as.integer(round(.data[["y"]]))
) %>%
dplyr::bind_rows(gg_data) %>%
dplyr::arrange(dplyr::desc(dplyr::row_number())) %>%
dplyr::distinct(.data[["report_date"]], .keep_all = TRUE) %>%
dplyr::arrange(.data[["report_date"]])
}
#' Set Theme for Cumulative Case Plot
#'
#' Sets ggplot2 theme using
#' \code{\link[coviData:set_covid_theme]{set_covid_theme()}} and rotates
#' x-axis labels by 45 degrees.
#'
#' @param gg_obj A `ggplot` object
#'
#' @return The `ggplot` object with adjusted theme
#'
#' @noRd
set_cumulative_theme <- function(gg_obj) {
set_covid_theme(gg_obj) +
ggplot2::theme(
axis.text.x = ggplot2::element_text(angle = 45, hjust = 1, vjust = 1)
)
}
#' Add x- and y-axis Scales to Cumulative Case Plot
#'
#' Adds x-axis scale with monthly breaks using
#' \code{\link[coviData:add_scale_month]{add_scale_month()}} and y-axis scale
#' with 10k breaks.
#'
#' @param gg_obj A `ggplot` object
#'
#' @return The `ggplot` object with scales set
#'
#' @noRd
add_cumulative_scale <- function(gg_obj) {
breaks <- seq(0L, 1e6L, by = 1e4L)
labels <- breaks %>% divide_by(1e3L) %>% paste0("k")
add_scale_month(gg_obj) +
ggplot2::scale_y_continuous(
breaks = breaks,
labels = labels
)
}
#' Add Cumulative Case Curve to Plot
#'
#' Adds a \code{\link[ggplot2:geom_col]{geom_col()}} curve to the plot
#'
#' @param gg_obj A `ggplot` object
#'
#' @param The `ggplot` object with the added geom
#'
#' @noRd
add_cumulative_curve <- function(gg_obj) {
gg_obj +
ggplot2::geom_col(
fill = "midnightblue",
width = 1,
show.legend = FALSE
)
}
#' Add Label to Cumulative Case Plot
#'
#' Adds a label in the upper-left with 'Total' and 'New' cases
#'
#' @param gg_obj A `ggplot` object
#'
#' @param total Total cases in data
#'
#' @param new New cases for report date
#'
#' @return The `ggplot` object with the added label
#'
#' @noRd
add_cumulative_label <- function(gg_obj, total, new) {
x <- gg_var(gg_obj, "x")
y <- gg_var(gg_obj, "y")
min_date <- min(gg_obj[["data"]][[x]], na.rm = TRUE)
label <- paste0(
"Total Cases = ", format(total, big.mark = ","), "\n",
" New Cases = ", format(new, big.mark = ",")
)
gg_obj +
ggplot2::annotate(
"label",
x = min_date,
y = total,
label = label,
color = "midnightblue",
fill = "#f0f0f0",
hjust = 0,
vjust = 1,
fontface = "bold",
label.size = 1
)
}
#' Add Axis Labels to Cumulative Case Plot
#'
#' Adds `"Report Date"` x-axis label and `"Cumulative Cases"` y-axis label
#'
#' @param gg_obj A `ggplot` object
#'
#' @return The `ggplot` object with added axis labels
#'
#' @noRd
add_cumulative_axis_labels <- function(gg_obj) {
add_axis_labels(gg_obj, xlab = "Report Date", ylab = "Cumulative Cases")
}
#' Add Title and Subtitle to Cumulative Case Plot
#'
#' Adds title `"Cumulative COVID-19 Cases by Report Date"` and a subtitle
#' displaying the report date
#'
#' @param gg_obj A `ggplot` object
#'
#' @param date The report date to add as subtitle
#'
#' @return The `ggplot` object with added title and subtitle
#'
#' @noRd
add_cumulative_title_caption <- function(gg_obj, date) {
add_title_caption(
gg_obj,
title = "Cumulative COVID-19 Cases by Report Date",
subtitle = format(lubridate::as_date(date), "%B %d, %Y")
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.