`GAPIT.Burger` <-
function(Y=NULL,CV=NULL,GK=NULL){
#Object: To calculate likelihood, variances and ratio
#Straitegy: NA
#Output: P value
#intput:
#Y: phenotype with columns of taxa,Y1,Y2...
#CV: covariate variables with columns of taxa,v1,v2...
#GK: Genotype data in numerical format, taxa goes to row and snp go to columns. the first column is taxa (same as GAPIT.bread)
#Authors: Xiaolei Liu ,Jiabo Wang and Zhiwu Zhang
#Last update: November 2, 2015
##############################################################################################
#print("GAPIT.Burger in progress...")
if(!is.null(CV)){
#CV=as.matrix(CV)#change CV to a matrix when it is a vector xiaolei changed here
#theCV=as.matrix(cbind(matrix(1,nrow(CV),1),CV)) ###########for FarmCPU
theCV=as.matrix(cbind(matrix(1,nrow(CV),1),CV[,-1])) #reseted by Jiabo ,CV frame is wrong,and not rm taxa
#############for GAPIT other method GWAS
}else{
theCV=matrix(1,nrow(Y),1)
}
#handler of single column GK
n=nrow(GK)
m=ncol(GK)
if(m>2){
theGK=as.matrix(GK[,-1])
}else{
theGK=matrix(GK[,-1],n,1)
}
myFaSTREML=GAPIT.get.LL(pheno=matrix(Y[,-1],nrow(Y),1),geno=NULL,snp.pool=theGK,X0=theCV )
REMLs=-2*myFaSTREML$LL
delta=myFaSTREML$delta
vg=myFaSTREML$vg
ve=myFaSTREML$ve
#print("GAPIT.Burger succeed!")
return (list(REMLs=REMLs,vg=vg,ve=ve,delta=delta))
} #end of GAPIT.Burger.Bus
#=============================================================================================
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.