Description Usage Arguments Details Value See Also Examples
Perform SALSA steps for threshold detection
1 2 3 4 5 6 | do_salsa_steps(x, n_vector = NULL, n_start = NULL, max_step = NULL,
step_size = NULL, count_vector = NULL, dists = c("frechet",
"frechet-weibull"), cache_fr = cache_filesystem("./cache_fr"),
cache_fr_wei = cache_filesystem("./cache_fr_wei"),
param_fr_wei = NULL, fr_method = "mme", fr_wei_method = c("mle",
"mge"), do_shiny_progress = FALSE, verbose = FALSE, ...)
|
x |
numeric vector of counts, either the number of UMI per cell, or the number of UMI per gene. |
n_vector, n_start, max_step, step_size, count_vector |
arguments passed to |
dists |
character vector determining which distribution
fit functions to calculate, |
cache_fr, cache_fr_wei |
list objects output from
|
param_fr_wei |
|
fr_method, fr_wei_method |
character string with valid
|
do_shiny_progress |
logical indicating whether to
send progress updates to a running shiny app, using
the |
verbose |
logical indicating whether to print verbose output. |
... |
additional arguments are ignored. |
This function is a wrapper around fitdist_fr()
and
fitdist_fr_wei()
, which iterates through a wide range
of possible thresholds to determine the fit parameters,
and associated lower and upper bounds. The results
are intended to be plotted to determine appropriate
thresholds to use when calculating the lower and upper
bounds for barcodes and genes in a single cell RNA-seq
dataset.
list
with one element for each value in count_vector
,
where each list element contains a list with one entry for
each value in argument dists
containing the fit parameters
for each selected distribution, as well as an entry "min_count"
which contains the minimum counts to use in each fit. When
dists
contains "frechet-weibull"
each list includes
"lower_bound"
. When dists
contains "frechet"
each list
includes "upper_bound"
. The output is intended to be passed
to get_salsa_table()
.
Other SALSA core functions: get_salsa_table
1 2 3 4 5 6 7 8 9 | library(salsa);
data(oz2_numi_per_cell);
x <- oz2_numi_per_cell$count[oz2_numi_per_cell$count >= 16];
x_salsa <- do_salsa_steps(x,
count_vector=c(16,32,128),
cache_fr=NULL,
cache_fr_wei=NULL);
x_df <- get_salsa_table(x_salsa);
x_df;
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.