#' Beta update in L2E isotonic regression - MM
#'
#' \code{update_beta_MM_isotonic} updates beta for L2E isotonic regression using MM
#'
#' @param y response
#' @param beta initial vector of regression coefficients
#' @param tau precision estimate
#' @param max_iter maximum number of iterations
#' @param tol relative tolerance
#' @return Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized
#' @importFrom isotone gpava
#'
update_beta_MM_isotonic <- function(y,beta,tau,max_iter=1e2,tol=1e-4) {
n <- length(y)
for (i in 1:max_iter) {
beta_last <- beta
# Compute the weights
r <- y - beta_last
w <- exp(-0.5* (tau*r)**2 )
w <- ifelse(w==0, 1e-20, w) # 0 weights will cause NA in beta
# Now solve a weighted isotonic regression,
# isotone package has a function gpava, solving \sum_{i=1}^n w_ii (y_i - \beta_i)^2
beta <- gpava(z=1:n, y =y, weights = sqrt(w))$x
if (norm(as.matrix(beta_last-beta),'f') < tol*(1 + norm(as.matrix(beta_last),'f'))) break
}
return(list(beta=beta,iter=i))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.