Description Usage Arguments Details Value Author(s) See Also Examples
Sample from a new chain or chains, using a previous map2stan fit object.
1 2 |
object |
Object of class |
iter |
Number of sampling iterations, including warmup |
warmup |
Number of adaptation steps |
chains |
Number of independent chains |
cores |
Number of cores to distribute chains across |
DIC |
If |
WAIC |
If |
rng_seed |
Optional seed to use for all chains. When missing, a random seed is chosen and used for all chains. |
... |
Other parameters to pass to |
This function is a convenience for drawing more samples from an initial map2stan fit.
When cores is set greater than 1, either mclapply (on a unix system) or parLapply (on a Windows system) is used to run the chains, distributing them across processor cores. The results are automatically recombined with sflist2stanfit.
An object of class map2stan, holding the new samples, as well as all of the original formulas and data for the model.
Richard McElreath
map2stan, mclapply, sflist2stanfit
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ## Not run:
data(Trolley)
d <- Trolley
d2 <- list(
y=d$response,
xA=d$action,
xI=d$intention,
xC=d$contact,
id=as.integer(d$id)
)
Nid <- length(unique(d2$id))
# ordered logit regression with varying intercepts
m.init <- map2stan(
alist(
y ~ dordlogit( phi , cutpoints ),
phi <- aj + bA*xA + bI*xI + bC*xC,
c(bA,bI,bC) ~ dnorm(0,1),
aj[id] ~ dnorm(0,sigma_id),
sigma_id ~ dcauchy(0,2.5),
cutpoints ~ dcauchy(0,2.5)
),
data=d2 ,
start=list(
bA=0,bI=0,bC=0,
cutpoints=c(-2,-1.7,-1,-0.2,0.5,1.3),
aj=rep(0,Nid),sigma_id=1
),
types=list(cutpoints="ordered") ,
iter=2
)
# Note: parallel chains won't work on Windows
m <- resample( m.init , chains=3 , cores=3 , warmup=1000 , iter=3000 )
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.