jscode <-
"
shinyjs.disableTab = function(name) {
var tab = $('.nav li a[data-value=' + name + ']');
tab.bind('click.tab', function(e) {
e.preventDefault();
return false;
});
tab.addClass('disabled');
}
shinyjs.enableTab = function(name) {
var tab = $('.nav li a[data-value=' + name + ']');
tab.unbind('click.tab');
tab.removeClass('disabled');
}
"
css <-
"
.nav li a.disabled {
background-color: #ccc !important;
color: #aaa !important;
cursor: not-allowed !important;
border-color: #aaa !important;
}
"
ui <- shiny::fluidPage(shinyjs::useShinyjs(),
shinyjs::extendShinyjs(text = jscode, functions =c("disableTab", "enableTab")),
shinyjs::inlineCSS(css),
shiny::img(src='cat2.png', height=120, width=160, hspace = 5, vspace = 5),
shiny::tabsetPanel(id = 'navbar',
shiny::tabPanel(title = "Training",
id = "trnTab",
fluid = T,
shiny::sidebarLayout(
shiny::sidebarPanel(
shiny::fileInput(
"pre",
"Negative Training",
multiple = TRUE,
accept = c("text/tsv", "text/tab-seperated-values", ".tsv")
),
shiny::fileInput(
"post",
"Positive Training",
multiple = TRUE,
accept = c("text/tsv", "text/tab-seperated-values", ".tsv")
),
shiny::radioButtons(
"field",
"Analyze Clonotypes By (column names in parantheses):",
choices = list(
"CDR3 Amino Acid (aminoAcid)" = "aminoAcid",
"TCRV-CDR3-TCRJ (vGeneName aminoAcid jGeneName)" = "vGeneName aminoAcid jGeneName",
"Nucleic Acid (nucleotide)" = "nucleotide",
"Other" = "other"
)
),
shinyjs::hidden(shiny::textInput("otherbt", "Please provide data columns to analyze by (space-separated)",
value = "vGeneName aminoAcid jGeneName")),
shiny::textInput("pcut", "Max p-value", value = 0.1),
shiny::textInput("thresh", "Min Threshold of Public Sequences", value = 1),
shiny::tags$hr(),
shiny::actionButton("run", "Train Model"),
shiny::br(),
shiny::br(),
shiny::div(shinyjs::hidden(shiny::downloadButton('dnScreen', label="Save Parameters", style='padding-left:125px; padding-right:125px')))
),
shiny::mainPanel(
shinyjs::hidden(shiny::h4(id = 'h4', "Training Data Summary:")),
shiny::tableOutput('trnTable'),
shinyjs::hidden(shiny::downloadButton('dnSummary', label="Table")),
shinyjs::hidden(shiny::h4(id = 'h1', "Pre/Post Distributions:")),
shiny::plotOutput(outputId = "plot"),
shiny::div(style="display:inline-block", shinyjs::hidden(shiny::downloadButton('dnPlot', label="Plot PNG"))),
shiny::div(style="display:inline-block", shinyjs::hidden(shiny::downloadButton('dnPlotPDF', label="Plot PDF"))),
shiny::br(),
shiny::br(),
shinyjs::hidden(shiny::h4(id = 'h2', "Classification Matrix: ")),
shiny::tableOutput('table'),
shinyjs::hidden(shiny::downloadButton('dnClass', label="Table"))
)
)
),
shiny::tabPanel(
title = "Library",
value = "libTab",
DT::dataTableOutput("library"),
shiny::br(),
shinyjs::hidden(shiny::downloadButton('dnLib', label="Table"))
),
shiny::tabPanel(
title = "Prediction",
value = "predTab",
fluid = T,
shiny::sidebarLayout(
shiny::sidebarPanel(
shiny::fileInput(
"indpt",
"Independent Sample(s)",
multiple = T,
accept = c("text/tsv", "text/tab-separated-values", ".tsv")
),
shiny::tags$hr(),
shiny::actionButton("pred", "Predict Independent Sample(s)")
),
shiny::mainPanel(shinyjs::hidden(shiny::h4(
id = "h3", "Prediction Results:"
)),
DT::dataTableOutput('result'),
shiny::br(),
shinyjs::hidden(shiny::downloadButton('dnPred', label="Table"))
)
)
)
)
)
server <- function(input, output, session) {
shinyjs::js$disableTab("predTab")
shinyjs::js$disableTab("libTab")
options(shiny.maxRequestSize=10000*1024^2)
observe({
shinyjs::toggle("otherbt", anim = T, condition = input$field == "other")
if (input$field == "other") {
field <<- input$otherbt
} else {
field <<- input$field
}
})
both <- shiny::eventReactive(input$run, {
shiny::validate(shiny::need(input$pre !="", "Please select negative samples"),
shiny::need(input$post != "", "Please select postive samples" ))
progress <- shiny::Progress$new(style = 'notification')
progress$set(message = "Training Procedure", value = 0)
on.exit(progress$close())
updateProgress <- function(value = NULL, detail = NULL) {
if (is.null(value)) {
value <- progress$getValue()
value <- value + (progress$getMax() - value) / 5
}
progress$set(value = value, detail = detail)
}
updateProgress(detail = "Reading files")
naive <- readTrn(input$pre$datapath, field, "naive")
vaccs <- readTrn(input$post$datapath, field, "vacc")
anl <- train(naive, vaccs, input$pre$datapath, input$post$datapath, field, input$pcut, input$thresh, updateProgress)
shinyjs::show("h1")
shinyjs::show("h2")
shinyjs::show("h4")
shinyjs::show("dnPlot")
shinyjs::show("dnPlotPDF")
shinyjs::show("dnLib")
shinyjs::show("dnScreen")
shinyjs::show("libTab")
shinyjs::show("dnSummary")
shinyjs::show("dnClass")
shinyjs::js$enableTab("predTab")
shinyjs::js$enableTab("libTab")
return(anl)
})
preds <- shiny::eventReactive(input$pred, {
shinyjs::show("h3")
shinyjs::show("dnPred")
return(pred(both(), input$indpt$datapath, input$indpt$name, field))
})
output$plot <- shiny::renderPlot({
plotHist(both())
})
output$trnTable <- shiny::renderTable({
both()
trnStats(input$pre$datapath, input$post$datapath, field)
}, rownames = T)
output$table <- renderTable({
classMat(both())
},
include.rownames = T)
output$result <- DT::renderDataTable({
DT::formatStyle(
DT::datatable(preds()),
'Prediction',
target = 'row',
color = DT::styleEqual(c("Negative", "Positive"), c('blue', 'red'))
)
})
output$dnPred <- shiny::downloadHandler(
filename = "predictions.csv",
content = function(file) {
write.csv(preds(), file, row.names=F)
}
)
output$dnClass <- shiny::downloadHandler(
filename = "classification_matrix.csv",
content = function(file) {
write.csv(classMat(both()), file, row.names=T)
}
)
output$dnSummary <- shiny::downloadHandler(
filename = "training_summary.csv",
content = function(file) {
both()
write.csv(trnStats(input$pre$datapath, input$post$datapath, field), file, row.names=T)
}
)
output$dnPlot <- shiny::downloadHandler(
filename = "clonotypes_distribution.png",
content = function(file) {
both()
png(file)
print(plotHist(both()))
dev.off()
}
)
output$dnScreen <- shiny::downloadHandler(
filename = paste("iCAT_report_", Sys.time(), ".txt", sep = ""),
content = function(file) {
cat(paste("iCAT Run on ", Sys.time()), file=file, sep="\n")
cat("\nNegative Files:", file=file, append=T, sep="\n")
cat(input$pre$name, file=file, append=T, sep="\n")
cat("\nPositive Files:", file=file, append=T, sep="\n")
cat(input$post$name, file=file, append=T, sep="\n")
cat("\nField:", file=file, append=T, sep="\n")
cat(field, file=file, append=T, sep="\n")
cat("\nMax PValue:", file=file, append=T, sep="\n")
cat(input$pcut, file=file, append=T, sep="\n")
cat("\nMin Threshold of Public Sequences:", file=file, append=T, sep="\n")
cat(input$thresh, file=file, append=T, sep="\n")
}
)
output$dnPlotPDF <- shiny::downloadHandler(
filename = "clonotypes_distribution.pdf",
content = function(file) {
pdf(file)
print(plotHist(both()))
dev.off()
}
)
output$dnLib <- shiny::downloadHandler(
filename = "clonotypes_library.csv",
content = function(file) {
write.csv(getLib(both()), file, row.names=F)
}
)
output$library <- DT::renderDataTable({
DT::datatable(getLib(both()))
},
options = list(scrollX = TRUE))
}
shinyApp(ui, server)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.