Description Usage Arguments Value References Examples
Fits a kernel multitask regression (KMR) model.
1 2 3 |
x |
Input matrix of covariates, of dimension |
y |
Output matrix of responses. |
kx_type |
Kernel for observations. |
kx_option |
An optional list of parameters for the observation kernel,
including elements such as " |
kt_type |
Kernel for tasks. |
kt_option |
An optional list of parameters for the task kernel,
including elements such as " |
An object (list) of class "kmr", which can then be used to make
predictions for the different tasks on new observations.
Bernard, E., Jiao, Y., Scornet, E., Stoven, V., Walter, T., and Vert, J.-P. (2017). Kernel multitask regression for toxicogenetics. bioRxiv-171298.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | # Data
ntr <- 80
ntst <- 20
nt <- 50
p <- 20
xtrain <- matrix(rnorm(ntr*p),ntr,p)
xtest <- matrix(rnorm(ntst*p),ntst,p)
ytrain <- matrix(rnorm(ntr*nt),ntr,nt)
ytest <- matrix(rnorm(ntst*nt),ntst,nt)
# Case I: with linear kernel for x and empirical kernel for t
# Train
mo1 <- kmr(x=xtrain, y=ytrain, kx_type="linear", kt_type="empirical")
# Predict
pred1 <- predict(mo1, xtest)
# Evaluate
evalpred(pred1, ytest, "mse")
# Case II: with precomputed kernel matrices
# Kernel matrices
kxtrain <- tcrossprod(xtrain)
kxtest <- tcrossprod(xtest,xtrain)
kttrain <- cor(ytrain)
# Train
mo2 <- kmr(x=kxtrain, y=ytrain, kx_type="precomputed",
kt_type="precomputed", kt_option=list(kt=kttrain))
# Predict
pred2 <- predict(mo2, kxtest)
# Evaluate
evalpred(pred2, ytest, "mse")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.