Description Usage Arguments Examples
This function plots the untransformed Cq values for each target against the log2([cDNA]). Then it performs linear regression and plots the R^2 and y ~ x formula.
1 2 3 | eff.plot(tablename, logConcentration = "logConcentration",
groupColumn = "Target", meanCq = "meanCq", plotWidth = 10,
plotHeight = 10)
|
tablename: |
a relex object with an added column of log2([cDNA]) called logConcentration |
groupColumn: |
defaults to "Target". Defines the grouping column which will define coloring. |
logConcentration: |
defaults to "logConcentration". Defines the column containing log2([cDNA]) values. |
meanCq: |
defaults to "meanCq". Defines the column containing meanCq values. |
plotWidth: |
width of output pdf file |
plotHeight: |
height of output pfd file |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | cq <- Rsome::cqimport(cqfile)
mc <- Rsome::mcimport(
cqimport = cq,
meltderivative = meltfile)
re <- Rsome::relex(
cq,
household = "Gapdh",
SDcutoff = 1,
Cqcutoff = 35)
library(tidyr)
library(dplyr)
eff <- separate(re, "Sample", c("Exp", "Condition", "Concentration"), sep = "_")
eff$Concentration <- as.numeric(eff$Concentration)
eff <- eff %>%
filter(Concentration > 0) %>%
mutate(logConcentration = log2(Concentration))
p1 <- eff.plot(
eff,
logConcentration = "logConcentration",
groupColumn = "Target",
meanCq = "meanCq")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.