#' Plot concentration curve and linear regression.
#'
#' This function plots the untransformed Cq values for each target against the log2([cDNA]).
#' Then it performs linear regression and plots the R^2 and y ~ x formula.
#'
#' @param tablename: a relex object with an added column of log2([cDNA]) called logConcentration
#' @param groupColumn: defaults to "Target". Defines the grouping column which will define coloring.
#' @param logConcentration: defaults to "logConcentration". Defines the column containing log2([cDNA]) values.
#' @param meanCq: defaults to "meanCq". Defines the column containing meanCq values.
#' @param plotWidth: width of output pdf file
#' @param plotHeight: height of output pfd file
#' @keywords qPCR, relative expression, plot
#' @export eff.plot
#' @examples
#'
#' cq <- Rsome::cqimport(cqfile)
#' mc <- Rsome::mcimport(
#' cqimport = cq,
#' meltderivative = meltfile)
#'
#' re <- Rsome::relex(
#' cq,
#' household = "Gapdh",
#' SDcutoff = 1,
#' Cqcutoff = 35)
#'
#' library(tidyr)
#' library(dplyr)
#'
#' eff <- separate(re, "Sample", c("Exp", "Condition", "Concentration"), sep = "_")
#' eff$Concentration <- as.numeric(eff$Concentration)
#' eff <- eff %>%
#' filter(Concentration > 0) %>%
#' mutate(logConcentration = log2(Concentration))
#'
#' p1 <- eff.plot(
#' eff,
#' logConcentration = "logConcentration",
#' groupColumn = "Target",
#' meanCq = "meanCq")
#'
eff.plot <- function(tablename,
logConcentration = "logConcentration",
groupColumn = "Target",
meanCq = "meanCq",
plotWidth = 10,
plotHeight = 10){
#Load required packages
library(ggplot2)
library(dplyr)
library(tidyr)
#Modify stat_smooth function to include formula and R^2 in plot
stat_smooth_func <- function(mapping = NULL, data = NULL,
geom = "smooth", position = "identity",
...,
method = "auto",
formula = y ~ x,
se = TRUE,
n = 80,
span = 0.75,
fullrange = FALSE,
level = 0.95,
method.args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
xpos = NULL,
ypos = NULL) {
layer(
data = data,
mapping = mapping,
stat = StatSmoothFunc,
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
method = method,
formula = formula,
se = se,
n = n,
fullrange = fullrange,
level = level,
na.rm = na.rm,
method.args = method.args,
span = span,
xpos = xpos,
ypos = ypos,
...
)
)
}
StatSmoothFunc <- ggproto("StatSmooth", Stat,
setup_params = function(data, params) {
# Figure out what type of smoothing to do: loess for small datasets,
# gam with a cubic regression basis for large data
# This is based on the size of the _largest_ group.
if (identical(params$method, "auto")) {
max_group <- max(table(data$group))
if (max_group < 1000) {
params$method <- "loess"
} else {
params$method <- "gam"
params$formula <- y ~ s(x, bs = "cs")
}
}
if (identical(params$method, "gam")) {
params$method <- mgcv::gam
}
params
},
compute_group = function(data, scales, method = "auto", formula = y~x,
se = TRUE, n = 80, span = 0.75, fullrange = FALSE,
xseq = NULL, level = 0.95, method.args = list(),
na.rm = FALSE, xpos=NULL, ypos=NULL) {
if (length(unique(data$x)) < 2) {
# Not enough data to perform fit
return(data.frame())
}
if (is.null(data$weight)) data$weight <- 1
if (is.null(xseq)) {
if (is.integer(data$x)) {
if (fullrange) {
xseq <- scales$x$dimension()
} else {
xseq <- sort(unique(data$x))
}
} else {
if (fullrange) {
range <- scales$x$dimension()
} else {
range <- range(data$x, na.rm = TRUE)
}
xseq <- seq(range[1], range[2], length.out = n)
}
}
# Special case span because it's the most commonly used model argument
if (identical(method, "loess")) {
method.args$span <- span
}
if (is.character(method)) method <- match.fun(method)
base.args <- list(quote(formula), data = quote(data), weights = quote(weight))
model <- do.call(method, c(base.args, method.args))
m = model
eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(r)^2~"="~r2,
list(a = format(coef(m)[[1]], digits = 3),
b = format(coef(m)[[2]], digits = 3),
r2 = format(summary(m)$r.squared, digits = 3)))
func_string = as.character(as.expression(eq))
if(is.null(xpos)) xpos = min(data$x)*0.9
if(is.null(ypos)) ypos = max(data$y)*0.9
data.frame(x=xpos, y=ypos, label=func_string)
},
required_aes = c("x", "y")
)
#Then plot the Cq values, faceting is set to the target gene.
p1 <- ggplot(eff, aes(x=logConcentration, y=meanCq), group = groupColumn)+
scale_y_continuous(limits=c(12.5,NA))+
geom_point()+
facet_wrap(
~ Target,
scales = "free")+
stat_smooth(method = "lm", se = FALSE)+
stat_smooth_func(
geom = "text",
method = "lm",
hjust = 0,
parse = TRUE)+
theme_classic()
return(p1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.