Description Usage Arguments Value Examples
The 'plotConfidenceIntervals' is a high-level plotting function for visualizing confidence intervals. The 'plotAbundanceShift' function visualizes the shift in mismatch rates between two samples.
1 2 3 | plotConfidenceIntervals(x, ylim = c(-1.05, 1.05), color = NULL, ...)
plotAbundanceShift(x, ylim = c(-0.05, 1.05), rates = TRUE, ...)
|
x |
'GRanges' with mcols of a CI method, or 'data.frame' as returned by one of the CI methods, with the optional column 'start'. |
ylim |
Limits of the y-axis. Using this instead of using the 'ylim' prevents ugly warnings of 'ggplot2'. |
color |
Variable that determines the coloring of the confidence axis (character). |
rates |
Should the non-consensus rates of both samples be visualized as colored end points of the line range? (logical, default: TRUE). |
... |
Additional plotting arguments that are passed on to ggplot2::geom_pointrange. |
For a 'GRanges' input: A 'ggbio' object
For a 'data.frame' input: A 'ggplot' object
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ## Generate sample data
counts = data.frame(x1 = 1:5, n1 = 30, x2 = 0:4, n2 = 30)
## Agresti-Caffo
ci_ac = with(counts, acCi(x1, n1, x2, n2))
library(GenomicRanges)
gr = GRanges("1", IRanges(start = 1:nrow(counts), width = 1))
mcols(gr) = ci_ac
## GRanges
plotConfidenceIntervals(gr)
## data.frame
plotConfidenceIntervals(ci_ac)
## abundance shift
plotAbundanceShift(gr)
plotAbundanceShift(ci_ac)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.