| mergeObj | R Documentation |
Upon sequential or parallel execution of two or more eNetXplorer runs with different values of the mixing parameter alpha, and assuming the objects from those runs have been saved, this function creates a new eNetXplorer object that merges the alpha values. It currently supports linear (gaussian), logistic (binomial), and Cox regression models.
mergeObj(source_obj, source_dir=getwd(), dest_obj="eNet_merged.Robj",
dest_dir=NULL)
source_obj |
Vector with the names of two or more |
source_dir |
Source directory. Default is the working directory. |
dest_obj |
Name of the merged |
dest_dir |
Destination directory. If not specified, it will use |
An object with S3 class "eNetXplorer".
Julian Candia and John S. Tsang
Maintainer: Julian Candia julian.candia@nih.gov
eNetXplorer
# we first generate two objects over different alpha values, then merge them.
# we generate summary PDFs to compare the results before and after merging.
data(QuickStartEx)
working_dir = tempdir()
fit1 = eNetXplorer(x=QuickStartEx$predictor,y=QuickStartEx$response,
family="gaussian",alpha=seq(0,1,by=0.2),save_obj=TRUE,dest_dir=working_dir,
dest_obj="eNet1.Robj",n_run=20,n_perm_null=10,seed=111)
summaryPDF(fit1, dest_file="eNet1.pdf",dest_dir=working_dir)
fit2 = eNetXplorer(x=QuickStartEx$predictor,y=QuickStartEx$response,
family="gaussian",alpha=seq(0.1,0.9,by=0.2),save_obj=TRUE,dest_dir=working_dir,
dest_obj="eNet2.Robj",n_run=20,n_perm_null=10,seed=111)
summaryPDF(fit2, dest_file="eNet2.pdf",dest_dir=working_dir)
eNet_merged=mergeObj(source_obj=c("eNet1.Robj","eNet2.Robj"),source_dir=working_dir)
summaryPDF(eNet_merged,dest_file="eNet_merged.pdf",dest_dir=working_dir)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.