# This code reproduced courtesy of the authors, based on the method in: J.
# Munkhammar, J. Widén, D. W. van der Meer, Probabilistic forecasting of
# high-resolution clear-sky index time-series using a Markov-chain mixture
# distribution model, Solar Energy vol. 184, pp. 688-695, 2019.
# Original code can be accessed in the mcmFunctions.R script at:
# https://github.com/SheperoMah/MCM-distribution-forecasting
#' @export
mcmFit <- function(timeSeries, numBins, numStepAhead=1){
a <- min(timeSeries)
b <- max(timeSeries)
binWidth <- (b-a) / numBins
state <- floor((timeSeries - a) / binWidth) + 1
state[state > numBins] <- numBins # remove any state > numberOfStates
p <- matrix(0, numBins, numBins)
for (i in 2:length(timeSeries)){
p[state[i-1], state[i]] <- p[state[i-1], state[i]] + 1
}
#normalize p
pNormalized <- p / rowSums(p)
pNormalized[is.na(pNormalized)] <- 0.0
pStepped <- matrixcalc::matrix.power(pNormalized, numStepAhead)
return(pStepped)
}
#' @export
mcmForecast <- function(p, a, b, obs) {
stopifnot(a < b) # a should be less than b
stopifnot(diff(dim(p)) == 0) # p should be square matrix
stopifnot(obs >= a) # observation should be larger than the samllest value in the range.
numBins <- dim(p)[1]
binWidth <- (b-a) / numBins
binStartArray <- a + binWidth * (0:(numBins-1))
obsBin <- max(which(obs >= binStartArray))
returnList <- list(binStartingValues = binStartArray,
transitionProbs = p[obsBin,])
return(returnList)
}
#' @export
mcmRnd <- function(binStartVals, transProbs, numSamples){
binWidth <- diff(binStartVals)[1]
numBins <- length(binStartVals)
empiricalCdf <- cumsum(transProbs)
randWithinBin <- runif(numSamples, min=0, max=binWidth)
randWithinECDF <- runif(numSamples, min=0, max=1.0)
rndValue <- rep(0, numSamples)
for (i in 1:numSamples){
binIndex <- min(which(randWithinECDF[i] <= empiricalCdf))
rndValue[i] <- binStartVals[binIndex] + randWithinBin[i]
}
return(rndValue)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.